(1)由3an+2Sn=3,可得当n≥2时,3an-1+2Sn-1=3,两式相减可得得3an+1-3an+2an=0,整理可得数列{an}是等比数列,从而可求.
(2)由bn-bn-1=2Sn-1(n≥2)叠加可得bn-b1=2(Sn-1+…+S1),由(Ⅰ)知,代入可求.
【解析】
(1)∵n≥1,3an+2Sn=3,①
当n≥2时,3an-1+2Sn-1=3.②
由①-②,得3an+1-3an+2an=0
∴,n≥2.
又∵a1=1,3a2+2a1=3,解得 .
∴数列{an}是首项为1,公比为的等比数列.
∴(n为正整数)
(2)由bn-bn-1=2Sn-1(n≥2)叠加可得bn-b1=2(Sn-1+…+S1)
由(Ⅰ)知,
故n≥1