满分5 >
高中数学试题 >
用反证法证明命题:“三角形的内角中至少有一个不大于60度”时,假设正确的是( )...
用反证法证明命题:“三角形的内角中至少有一个不大于60度”时,假设正确的是( )
A.假设三内角都不大于60度
B.假设三内角都大于60度
C.假设三内角至多有一个大于60度
D.假设三内角至多有两个大于60度
考点分析:
相关试题推荐
已知函数f(x)=ax
3+bx
2-3x在x=±1处取得极值.
(1)求函数f(x)的解析式;
(2)若过点A(1,m)(m≠-2)可作曲线y=f(x)的三条切线,求实数m的取值范围.
查看答案
已知二次函数f(x)=ax
2+bx(a,b为常数,且a≠0)满足条件:f(x-1)=f(3-x)且方程f(x)=2x有等根.
(1)求f(x)的解析式;
(2)是否存在实数m,n(m<n),使f(x)的定义域和值域分别为[m,n]和[4m,4n],如果存在,求出m,n的值;如果不存在,说明理由.
查看答案
甲、乙两地相距S千米,汽车从甲地匀速行驶到乙地,速度不得超过c千米/时.已知汽车每小时的运输成本(以元为单位)由可变部分和固定部分组成:可变部分与速度v(千米/时)的平方成正比、比例系数为b;固定部分为a元.
(1)把全程运输成本y(元)表示为速度v(千米/时)的函数,并指出这个函数的定义域;
(2)为了使全程运输成本最小,汽车应以多大速度行驶?
查看答案
已知函数f(x)=2
x-1的反函数为f
-1(x),g(x)=log
4(3x+1).
(1)若f
-1(x)≤g(x),求x的取值范围P;
(2)设
,当x∈P时,求函数h(x)的值域.
查看答案
已知f(x)=ln(1+x)-
x
2 是定义在[0,2]上的函数
(1)求函数f(x)的单调区间
(2)若f(x)≥c对定义域内的x恒成立,求c的取值范围..
查看答案