满分5 > 高中数学试题 >

已知数列{an}是等差数列,a2=6,a5=18;数列{bn}的前n项和是Tn,...

已知数列{an}是等差数列,a2=6,a5=18;数列{bn}的前n项和是Tn,且Tn+manfen5.com 满分网bn=1.
(1)求数列{an}的通项公式;
(2)求证:数列{bn}是等比数列;
(3)记cn=an•bn,求{cn}的前n项和Sn
(1)设an的公差为d,根据等差数列通项公式根据a2=6,a5=18可求得a1和d,进而可求得数列{an}的通项公式; (2)先看当n≥2时根据Tn-Tn-1=bn,可得bn与bn-1的关系式整理的,进而可知为等比数列,最后验证n=1时,也成立.原式得证. (3)由(2)可求得数列{bn}的通项公式,进而可得{cn}的通项公式.数列{cn}由等差数列和等比数列构成,进而可用错位将减法求和. 【解析】 (1)设an的公差为d,则:a2=a1+d,a5=a1+4d, ∵a2=6,a5=18,∴,∴a1=2,d=4. ∴an=2+4(n-1)=4n-2. (2)当n=1时,b1=T1,由,得. 当n≥2时,∵,, ∴,即 ∴. bn是以为首项,为公比的等比数列. (3)由(2)可知:. ∴=. Sn=c1+c2+…cn-1+cn= ∴. ∴= = = ∴
复制答案
考点分析:
相关试题推荐
已知函数manfen5.com 满分网
(1)若f(x)为奇函数,求a的值;
(2)若f(x)在[3,+∞)上恒大于0,求a的取值范围.
查看答案
已知函数f(x)=log2(x+m),m∈R
( I)若f(1),f(2),f(4)成等差数列,求m的值;
( II)若a、b、c是两两不相等的正数,且a、b、c依次成等差数列,试判断f(a)+f(c)与2f(b)的大小关系,并证明你的结论.
查看答案
已知函数manfen5.com 满分网
(I)求函数f(x)的最小正周期; 
(II)求函数manfen5.com 满分网的值域.
查看答案
设全集U=R,集合A={x|6-x-x2>0},集合manfen5.com 满分网
(Ⅰ)求集合A与B;   
(Ⅱ)求A∩B、(CA)∪B.
查看答案
注意:在以下(1)(2)两题中任选一题.如果两题都做,按(1)给分.
(1)(坐标系与参数方程选做题)极坐标系中,A(2,manfen5.com 满分网),B(3,manfen5.com 满分网),则A、B两点的距离是:   
(2)(几何证明选讲选做题)如图AB是⊙O的直径,P为AB延长线上一点,PC切⊙O于点C,PC=4,PB=2.则⊙O的半径等于   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.