设函数f(x)的定义域是R,对于任意实数m,n,恒有f(m+n)=f(m)f(n),且当x>0时,0<f(x)<1.
(1)求证:f(0)=1,且当x<0时,有f(x)>1;
(2)判断f(x)在R上的单调性;
(3)设集合A={(x,y)|f(x
2)•f(y
2)>f(1)},B={(x,y)|f(ax-y+2)=1,a∈R},若A∩B=∅,求a的取值范围.
考点分析:
相关试题推荐
某研究机构准备举行一次数学新课程研讨会,共邀请50名一线教师参加,使用不同版本教材的教师人数如下表所示:
版本 | 人教A版 | 人教B版 | 苏教版 | 北师大版 |
人数 | 20 | 15 | 5 | 10 |
(1)从这50名教师中随机选出2名,求2人所使用版本相同的概率;
(2)若随机选出2名使用人教版的教师发言,设使用人教A版的教师人数为ξ,求随机变量ξ的变分布列和数学期望.
查看答案
二次函数f(x)满足:f(0)=2,f(x)=f(-2-x),它的导函数的图象与直线y=2x平行.
(I)求f(x)的解析式;
(II)若函数g(x)=xf(x)-x的图象与直线y=m有三个公共点,求m的取值范围.
查看答案
在某次测试中,甲、乙、丙三人能达标的概率分别为0.4,0.5,0.8,在测试过程中,甲、乙、丙能否达标彼此间不受影响.
(Ⅰ)求甲、乙、丙三人均达标的概率;
(Ⅱ)求甲、乙、丙三人中至少一人达标的概率.
查看答案
已知定义在R上的函数y=f(x)满足条件f(x+
)=-f(x),且函数y=f(x-
)是奇函数,给出以下四个命题:
①函数f(x)是周期函数;
②函数f(x)的图象关于点(-
,0)对称;
③函数f(x)是偶函数;
④函数f(x)在R上是单调函数.
在上述四个命题中,正确命题的序号是
(写出所有正确命题的序号)
查看答案