满分5 > 高中数学试题 >

如图,直角三角形ABC的顶点坐标A(-2,0),直角顶点,顶点C在x轴上,点P为...

如图,直角三角形ABC的顶点坐标A(-2,0),直角顶点manfen5.com 满分网,顶点C在x轴上,点P为线段OA的中点.
(1)求BC边所在直线方程;
(2)M为直角三角形ABC外接圆的圆心,求圆M的方程;
(3)若动圆N过点P且与圆M内切,求动圆N的圆心N的轨迹方程.

manfen5.com 满分网
(1)由,AB⊥BC,知,由此能求出BC边所在直线方程; (2)在BC边所在直线方程中,令y=0,得C(4,0),由此知圆心M(1,0),再由AM=3,可求出圆M的方程; (3)由圆N过点P(-1,0),知PN是该圆的半径.再由动圆N与圆M内切,知MN+PN=3,故点N的轨迹是以M、P为焦点,长轴长为3的椭圆,由此能求出其轨迹方程. 【解析】 (1)∵,AB⊥BC, ∴, ∴(3分) (2)在上式中,令y=0,得C(4,0), ∴圆心M(1,0) 又∵AM=3, ∴外接圆的方程为(x-1)2+y2=9(7分) (3)∵P(-1,0),M(1,0) ∵圆N过点P(-1,0), ∴PN是该圆的半径 又∵动圆N与圆M内切, ∴MN=3-PN,即MN+PN=3(11分) ∴点N的轨迹是以M、P为焦点,长轴长为3的椭圆, ∴,c=1,(13分) , ∴轨迹方程为(15分)
复制答案
考点分析:
相关试题推荐
在平面直角坐标系xOy中,已知以O为圆心的圆与直线l:y=mx+(3-4m),(m∈R)恒有公共点,且要求使圆O的面积最小.
(1)写出圆O的方程;
(2)圆O与x轴相交于A、B两点,圆内动点P使manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网成等比数列,求manfen5.com 满分网的范围;
(3)已知定点Q(-4,3),直线l与圆O交于M、N两点,试判断manfen5.com 满分网是否有最大值,若存在求出最大值,并求出此时直线l的方程,若不存在,给出理由.
查看答案
已知圆C1:x2+y2=1,圆C2:(x-4)2+y2=4
(1)判断两圆位置关系;
(2)若直线l为过点P(3,0)且与圆C1相切的直线,求直线l的方程;
(3)在x轴上是否存在一定点Q(m,0),使得过Q点且与两圆都相交的直线被两圆所截得的弦长始终相等?若存在,求出Q点的坐标,若不存在,请说明理由.

manfen5.com 满分网 查看答案
在平面直角坐标系xOy中,已知圆C:x2+y2=4和直线l:2x+y-10=0,点P为圆C上任意一点.
(1)若直线l'∥l,且l'被圆C截得的弦长为manfen5.com 满分网,求直线l'的方程;
(2)过点P作圆C的切线,设此切线交直线l于点T,若manfen5.com 满分网,求点T的坐标;
(3)已知A(2,2),是否存在定点B(m,n),使得manfen5.com 满分网为定值k(k>1)?请证明你的结论.

manfen5.com 满分网 查看答案
已知⊙O:x2+y2=1和定点A(2,1),由⊙O外一点P(a,b)向⊙O引切线PQ,切点为Q,且满足|PQ|=|PA|.
(1)求实数a,b间满足的等量关系;
(2)求线段PQ长的最小值;
(3)若以P为圆心所作的⊙P与⊙O有公共点,试求半径最小值时⊙P的方程.
查看答案
将圆x2+y2+2x-2y=0按向量manfen5.com 满分网平移得到⊙O,直线l与⊙O相交于A、B两点,若在⊙O上存在点C,使manfen5.com 满分网.求直线l的方程.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.