先根据抛物线定义以及有一个角是60°的直角三角形的性质,证明|AF|=3|BF|,再根据|AF|=3,求出|AB|长,设出直线AB方程,与抛物线方程联立,利用抛物线中焦点弦公式,把|AB|长用含p的式子表示,由|AB|=4,解出p值.
【解析】
过点A,B向准线x=-作垂线,垂足分别为C,D,过B点向AC作垂线,垂足为E
∵A,B两点在抛物线y=2px上,∴|AC|=|AF|,|BD|=|BF|
∵BE⊥AC,∴|AE|=|AF|-|BF|,
∵直线AB的倾斜角为60°,∴在Rt△ABE中,2|AE|=|AB|=|AF|+|BF|
即2(|AF|-|BF)=|AF|+|BF|,∴|AF|=3|BF|
∵|AF|=3,∴|BF|=1,∴|AB|=|AF|+|BF|=4
设直线AB方程为y=(x-),代入y2=2px,得,
3x2-5px+=0,
∴x1+x2=
∴|AB|=x1+x2+==4
∴P=,∴抛物线方程为y2=3x
故选A