满分5 > 高中数学试题 >

已知双曲线与椭圆可共焦点,它们的离心率之和为,求双曲线方程.

已知双曲线与椭圆可manfen5.com 满分网共焦点,它们的离心率之和为manfen5.com 满分网,求双曲线方程.
先根据椭圆方程求得椭圆的焦点和离心率,进而根据题意求得双曲线的焦点和离心率,进而求得双曲线方程得长轴和短轴,则双曲线方程可得. 【解析】 依题意可知椭圆方程中a=5,b=3, ∴c==4 ∴椭圆焦点为F(O,±4),离心率为e= 所以双曲线的焦点为F(O,±4),离心率为2, 从而双曲线中 求得c=4,a=2,b=. 所以所求双曲线方程为
复制答案
考点分析:
相关试题推荐
写出命题manfen5.com 满分网,则x=2且y=一1”的逆命题、否命题、逆否命题,并判断它们的真假.
查看答案
如图,以等腰直角三角形斜边BC上的高AD为折痕,把△ABD与△ACD折成互相垂直的两个平面后,某学生得出下列四个结论:
manfen5.com 满分网
②∠BAC=60°;
③三棱锥D-ABC是正三棱锥;
④平面ADC的法向量和平面ABC的法向量互相垂直.
其中正确结论的序号是    .(请把正确结论的序号都填上)
manfen5.com 满分网 查看答案
椭圆manfen5.com 满分网的焦点F1F2,P为椭圆上的一点,已知PF1⊥PF2,则△F1PF2的面积为    查看答案
双曲线manfen5.com 满分网的渐近线方程是     查看答案
全称命题“∀x∈R,x2+x+3>0”的否定是     查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.