满分5 > 高中数学试题 >

如图,在四面体S-ABC中,E、F、G、H、M、N分别是棱SA、BC、AB、SC...

如图,在四面体S-ABC中,E、F、G、H、M、N分别是棱SA、BC、AB、SC、AC、SB的中点,且EF=GH=MN,求证:SA⊥BC,SB⊥AC,SC⊥AB.

manfen5.com 满分网
本题是一个证明线线垂直的问题,可以取SA,SB,SC三个有向线段对应的向量为基向量,将SA,BC,SB,AC,SC,AB这六个线段对应的向量用基向量表示出来利用数量积为0证明线线垂直. 证明:如图,设,则 分别为,,,,,…(4分) 由条件EF=GH=MN得:== 展开得 …(7分) ∴=0∵,…(9分) ∴,即SA⊥BC…(12分) 同理可证SB⊥AC,SC⊥AB…(14分)
复制答案
考点分析:
相关试题推荐
是否存在实数p,使4x+P<0是x2-x-2>0的充分条件?如果存在,求出P的取值范围;否则,说明理由.
查看答案
已知双曲线与椭圆可manfen5.com 满分网共焦点,它们的离心率之和为manfen5.com 满分网,求双曲线方程.
查看答案
写出命题manfen5.com 满分网,则x=2且y=一1”的逆命题、否命题、逆否命题,并判断它们的真假.
查看答案
如图,以等腰直角三角形斜边BC上的高AD为折痕,把△ABD与△ACD折成互相垂直的两个平面后,某学生得出下列四个结论:
manfen5.com 满分网
②∠BAC=60°;
③三棱锥D-ABC是正三棱锥;
④平面ADC的法向量和平面ABC的法向量互相垂直.
其中正确结论的序号是    .(请把正确结论的序号都填上)
manfen5.com 满分网 查看答案
椭圆manfen5.com 满分网的焦点F1F2,P为椭圆上的一点,已知PF1⊥PF2,则△F1PF2的面积为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.