满分5 > 高中数学试题 >

设函数f(x)=ax3+bx2-3a2x+1(a,b∈R)在x=x1,x=x2处...

设函数f(x)=ax3+bx2-3a2x+1(a,b∈R)在x=x1,x=x2处取得极值,且|x1-x2|=2.
(Ⅰ)若a=1,求b的值,并求f(x)的单调区间;
(Ⅱ)若a>0,求b的取值范围.
(Ⅰ)由题意f(x)=ax3+bx2-3a2x+1=x3+bx2-3x+1,求出其导数f'(x)=3x2+2bx-3,令f′(x)=0,求出极值点x=x1,x=x2利用|x1-x2|=2求出b值,并求f(x)的单调区间; (Ⅱ)不知a值,只知a>0,由题意知x1,x2为方程3x2+2bx-3a2=0的两根,得=2,求出a的范围,因g(a)=9a2-9a3,求出g(a)的单调区间,从而求出a与b的关系,最后根据a的范围确定b的范围. 【解析】 f'(x)=3ax2+2bx-3a2.①(2分) (Ⅰ)当a=1时,f'(x)=3x2+2bx-3; 由题意知x1,x2为方程3x2+2bx-3=0的两根,所以. 由|x1-x2|=2,得b=0.(4分) 从而f(x)=x2-3x+1,f'(x)=3x2-3=3(x+1)(x-1). 当x∈(-1,1)时,f'(x)<0;当x∈(-∞,-1)∪(1,+∞)时,f'(x)>0. 故f(x)在(-1,1)单调递减,在(-∞,-1),(1,+∞)单调递增.(6分) (Ⅱ)由①式及题意知x1,x2为方程3x2+2bx-3a2=0的两根, 所以.从而|x1-x2|=2⇔b2=9a2(1-a), 由上式及题设知0<a≤1.(8分) 考虑g(a)=9a2-9a3,.(10分) 故g(a)在单调递增,在单调递减,从而g(a)在(0,1]的极大值为. 又g(a)在(0,1]上只有一个极值,所以为g(a)在(0,1]上的最大值,且最小值为g(1)=0.所以,即b的取值范围为.(14分)
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网在平面直角坐标系xOy中,抛物线y=x2上异于坐标原点O的两不同动点A、B满足AO⊥BO(如图所示).
(Ⅰ)求△AOB的重心G(即三角形三条中线的交点)的轨迹方程;
(Ⅱ)△AOB的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由.
查看答案
已知正项数列{an}满足:manfen5.com 满分网-manfen5.com 满分网=1,(n∈N+,n≥2),且a1=4.
(1)求{an}的通项公式;
(2)求证manfen5.com 满分网+manfen5.com 满分网+…+manfen5.com 满分网<1(n∈N+
查看答案
已知函数f(x)=|x+2|-|x-1|.
(Ⅰ)试求f(x)的值域;
(Ⅱ)设manfen5.com 满分网若对∀s∈(0,+∞),∀t∈(-∞,+∞),恒有g(s)≥f(t)成立,试求实数a的取值范围.
查看答案
已知某精密仪器生产总成本C(单位:万元)与月产量x(单位:台)的函数关系为C=100+4x,月最高产量为15台,出厂单价p(单位:万元)与月产量x的函数关系为:p=76+15x-x2
(1)求月利润L与产量x的函数关系式L(x);
(2)求月产量x为何值时,月利润L(x)最大?
查看答案
设命题P:指数函数f(x)=ax在R上单调递减,命题Q:不等式ax2-x+a>0对∀x∈R恒成立,如果P或Q为真,P且Q为假,求a的取值范围.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.