满分5 > 高中数学试题 >

如图,在底面为直角梯形的四棱锥P-ABCD中,AD∥BC,∠ABC=90°,PA...

如图,在底面为直角梯形的四棱锥P-ABCD中,AD∥BC,∠ABC=90°,PA⊥平面ABCD,manfen5.com 满分网,BC=6
(Ⅰ)求证:BD⊥平面PAC;
(Ⅱ)求二面角P-BD-A的大小.

manfen5.com 满分网
解法一:(I)由已知中底面为直角梯形的四棱锥P-ABCD中,∠ABC=90°,且PA⊥平面ABCD,我们结合线面垂直的性质及勾股定理,可以得到BD与平面PAC中两个相交直线PA,AC均垂直,进而根据线面垂直的判定定理得到BD⊥平面PAC; (Ⅱ)连接PE,可得∠AEP为二面角P-BD-A的平面角,解三角形AEP即可得到二面角P-BD-A的大小. 解法二:(I)以A为坐标原点,建立空间坐标系,根据向量垂直,数量积为零,判断出BD⊥AP,BD⊥AC,再由线面垂直的判定定理得到BD⊥平面PAC; (Ⅱ)分别求出平面PBD与平面ABD的一个法向量,代入向量夹角公式,即可得到二面角P-BD-A的大小. 解法一:(Ⅰ)∵PA⊥平面ABCD,BD⊂平面ABCD.∴BD⊥PA. 又,.∴∠ABD=30°,∠BAC=60°,∴∠AEB=90°,即BD⊥AC. 又PA∩AC=A.∴BD⊥平面PAC. …..(6分) (Ⅱ)连接PE.∵BD⊥平面PAC.∴BD⊥PE,BD⊥AE.∴∠AEP为二面角P-BD-A的平面角. 在Rt△AEB中,, ∴,∴∠AEP=60°,∴二面角P-BD-A的大小为60°.            …..(12分) 解法二:(Ⅰ)如图,建立坐标系, 则A(0,0,0),,,D(0,2,0),P(0,0,3), ∴,,,∴. ∴BD⊥AP,BD⊥AC, 又PA∩AC=A,∴BD⊥面PAC. (Ⅱ)设平面ABD的法向量为m=(0,0,1), 设平面PBD的法向量为n=(x,y,1), 则n,n∴解得∴. ∴cos<m,n>==.∴二面角P-BD-A的大小为60°.
复制答案
考点分析:
相关试题推荐
一个口袋中装有大小相同的2个白球和3个黑球.
(Ⅰ)从中摸出两个球,求两球恰好颜色不同的概率;
(Ⅱ)从中摸出一个球,放回后再摸出一个球,求两球恰好颜色不同的概率.
查看答案
设函数f(x)=manfen5.com 满分网manfen5.com 满分网,其中向量manfen5.com 满分网=(m,cosx),manfen5.com 满分网=(1+sinx,1),x∈R,且f(manfen5.com 满分网)=2.
(1)求实数m的值;
(2)求函数f(x)的最小值.
查看答案
将大小不同的两种钢板截成A、B两种规格的成品,每张钢板可同时截得这两种规格的成品的块数如下表所示,若现在需要A、B两种规格的成品分别为12块和10块,则至少需要这两种钢板共网    张.
规格类型
钢板类型
A规格B规格
第一种钢板21
第二种钢板13
查看答案
椭圆manfen5.com 满分网的离心率为manfen5.com 满分网,则实数m的值为    查看答案
一个社会调查机构就某地居民的月收入调查了10000人,并根据所得数据画了样本的频率分布直方图(如图).为了分析居民的收入与年龄、学历、职业等方面的关系,要从这10000人中再用分层抽样方法抽出100人作进一步调查,则在[2500,3000)(元)月收入段应抽出    人.
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.