先由根的分布得出关于a,b的方程组,作出方程组对应的区域,即点(a,b)所表示的区域,点P到曲线(a+3)2+(b-2)2=1上的点Q的距离|PQ|的最小值即区域内的点到定点(-3,2)的距离的最小值.由图象判断找出两点中距离最近的点,用两点距离公式求出即可.
【解析】
由题意可得其对应的区域如图所示阴影部分,曲线(a+3)2+(b-2)2=1的圆心为(-3,2),此点在直线a+b+1=0上,由于两直线a+b+1=0与1-a+b=0垂直,故圆心与区域边界处的点(0,-1)距离是区域中的点与圆心的距离的最小值,其长度为3,故点(a,b)所表示的区域内的点P到曲线(a+3)2+(b-2)2=1上的点Q的距离|PQ|的最小值为3-1,
故选A.