本题考查的是函数模型的选择和应用问题.在解答时,首先应该仔细观察图形,结合图形读出过的定点进而确定函数解析式,结合所给月份计算函数值从而获得相应浮萍的面积进而对问题作出判断,至于第⑤要充分结合对数运算的运算法则进行计算验证.
【解析】
∵点(1,2)在函数图象上,
∴2=a1∴a=2,故①正确;
∴函数y=2t在R上是增函数,且当t=5时,y=32故②正确,
4对应的t=2,经过1.5月后面积是23.5<12,故③不正确;
如图所示,1-2月增加2m2,2-3月增加4m2,故④不正确.
对⑤由于:2=2 ,3=2 ,6=2 ,
∴x1=1,x2=log23,x3=log26,
又因为1+log23=log22+log23=log22×3=log26,
∴若浮萍蔓延到2m2、3m2、6m2所经过的时间分别为x1,x2,x3,则x1+x2=x3成立.
故答案为:①②⑤.