由已知中函数y=f(x)在[0,2]上单调递增,且函数f(x+2)是偶函数,我们可得函数y=f(x)在[2,4]上单调递减,且在[0,4]上函数y=f(x)满足f(2-x)=f(2+x),由此要比较f(),f(1),f()的大小,可以比较f(),f(3),f().
【解析】
∵函数y=f(x)在[0,2]上单调递增,且函数f(x+2)是偶函数,
∴函数y=f(x)在[2,4]上单调递减
且在[0,4]上函数y=f(x)满足f(2-x)=f(2+x)
即f(1)=f(3)
∵f()<f(3)<f()
∴f()<f(1)<f()
故选B