满分5 > 高中数学试题 >

已知函数. (Ⅰ)证明; (Ⅱ)若数列{an}的通项公式为,求数列{an}的前m...

已知函数manfen5.com 满分网
(Ⅰ)证明manfen5.com 满分网
(Ⅱ)若数列{an}的通项公式为manfen5.com 满分网,求数列{an}的前m项和Sm
(Ⅲ)设数列{bn}满足:manfen5.com 满分网,设manfen5.com 满分网,若(Ⅱ)中的Sm满足对任意不小于2的正整数n,Sm<Tn恒成立,试求m的最大值
(Ⅰ)由函数表达式证明,只需要把函数表达式代入然后化解即可. (Ⅱ)由1中证明的结果代入通项公式推得,然后根据前n项和与通项的关系求得数列{an}的前m项和Sm. (Ⅲ)由数列bn满足的条件求得再用(Ⅱ)中的Sm满足Sm<Tn恒成立,直接代入求解. (Ⅰ)证明:∵, ∴, ∴. 故答案为.. (Ⅱ)【解析】 由(Ⅰ)可知, ∴, 即. ∴, , 又Sm=a1+a2++am-1+am①Sm=am-1+am-2++a1+am② ①+②得, ∴答案为; (Ⅲ)【解析】 ∵③ ∴对任意n∈N*,bn>0④ , ∴, ∴ ∵bn+1-bn=bn2>0,∴bn+1>bn. ∴数列{bn}是单调递增数列.∴Tn关于n递增, ∴当n≥2,且n∈N*时,Tn≥T2. ∵, ∴.(14分) 由题意,即, ∴∴m的最大值为6. 故答案为6.
复制答案
考点分析:
相关试题推荐
已知manfen5.com 满分网,其中a为常数.
(1)试判断函数f(x)的奇偶性;
(2)若(0,e]时,函数f(x)的最大值为-1,求实数a的值;
(3)在(2)的条件下,求证:manfen5.com 满分网
查看答案
已知动⊙M经过点D(-2,0),且与圆C:x2+y2-4x=0外切.
(1)求点M的轨迹方程;
(2)记半径最小的圆为⊙M,直线l与⊙M相交于A,B两点,且⊙M上存在点P,使得manfen5.com 满分网(λ≠0)
①求⊙M的方程;
②求直线l的方程及相应的点P坐标.
查看答案
已知a是实数,函数f(x)=2ax2+2x-3-a
(1)若f(x)≤0在R上恒成立,求a的取值范围.
(2)若函数y=f(x)在区间[-1,1]上恰有一个零点,求a的取值范围.
查看答案
如图,已知:在菱形ABCD中,∠DAB=60°,PA⊥底面ABCD,PA=DA,E,F分别是AB与PD的中点.
(1)求证:PC⊥BD;
(2)求证:AF∥平面PEC;
(3)在线段BC上是否存在一点M,使AF⊥平面PDM?
若存在,指出点M的位置;若不存在,说明理由.

manfen5.com 满分网 查看答案
已知函数manfen5.com 满分网
(1)求f(x)的定义域和值域;
(2)若manfen5.com 满分网的值.
(3)若曲线f(x)在点P(x,f(x))manfen5.com 满分网处的切线平行直线manfen5.com 满分网,求x的值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.