①利用奇函数的定义进行验证;②当x>0时,,可求其值域,由①知当x<0时,可求f(x)值域,x=0时,f(x)=0,从而可判断;③由②知若x1≠x2,则不一定有f(x1)≠f(x2);④由③知f(x)的图象与y=-x有三个交点,故可判断.
【解析】
①∴正确
②当x>0时,∈(0,+∞)∪(-∞,-1)
由①知当x<0时,f(x)=∈(1,+∞)∪(-∞,0)
x=0时,f(x)=0
∴函数 f (x) 的值域为R,故正确;
③由②知若x1≠x2,则不一定有f(x1)≠f(x2),由于x<0时,f(x)=,x>0时,,不妨令函数值为3,则可知或,故不正确
④由③知f(x)的图象与y=-x有三个交点,原点及第二、四象限各一个,
∴函数g(x)=f(x)+x有三个零点,故正确.
故答案为:①②④