已知曲线C的极坐标方程是ρ=4cosθ.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直线l的参数方程是
(t是参数).
(1)将曲线C的极坐标方程化成直角坐标方程并把直线l的参数方程转化为普通方程;
(2)若过定点P(m,0)的直线l与曲线C相交于A、B两点,且|PA|•|PB|=3,试求实数m的值.
考点分析:
相关试题推荐
(1)若关于x的不等式|x+1|-|x-2|<a的解集不是空集,求实数a的取值范围;
(2)已知实数a,b,c,满足a+b+c=1,求(a-1)
2+2(b-2)
2+3(c-3)
2最小值.
查看答案
若实数a>0且a≠2,函数f(x)=
ax
3-
(a+2)x
2+2x+1.
(1)证明函数f(x)在x=1处取得极值,并求出函数f(x)的单调区间;
(2)若在区间(0,+∞)上至少存在一点x
,使得f(x
)<1成立,求实数a的取值范围.
查看答案
已知函数
.
(Ⅰ)若f(x)=2,求x的值;
(Ⅱ)若2
tf(2t)+mf(t)≥0对于t∈[1,2]恒成立,求实数m的取值范围.
查看答案
通过研究学生的学习行为,专家发现,学生的注意力着老师讲课时间的变化而变化,讲课开始时,学生的兴趣激增;中间有一段时间,学生的兴趣保持较理想的状态,随后学生的注意力开始分散,设f(t)表示学生注意力随时间t(分钟)的变化规律(f(t)越大,表明学生注意力越集中),经过实验分析得知:f(t)=
.
(1)讲课开始后多少分钟,学生的注意力最集中?能持续多少分钟?
(2)讲课开始后5分钟与讲课开始后25分钟比较,何时学生的注意力更集中?
(3)一道数学难题,需要讲解24分钟,并且要求学生的注意力至少达到180,那么经过适当安排,教师能否在学生达到所需的状态下讲授完这道题目?
查看答案
设全集为R,集合
,
,
(1)求A∩B;
(2)求A∪∁
RB;
(3)若C⊆A∪∁
RB,求a的取值范围.
查看答案