由B的度数求出sinB的值,再由b的值,利用正弦定理得出a与sinA的关系式,同时由B的度数求出A+C的度数,再根据三角形只有一解,可得A只有一个值,根据正弦函数的图象与性质得到A的范围,且当A为直角时,也满足题意,进而由A的范围,求出正弦函数的值域,根据a与sinA的关系式,由正弦函数的值域即可可得出a的范围.
【解析】
∵B=45°,b=2,
根据正弦定理得:==2,
∴a=2sinA,
又A+C=180°-45°=135°,且三角形只一解,可得A有一个值,
∴0<A≤45°,
又A=90°时,三角形也只有一解,
∴0<sinA≤,或sinA=1,
又a=2sinA,
∴a的取值范围为(0,2]∪{2}.
故答案为:(0,2]∪{2}