先利用待定系数法求出到直线l:x+y-10=0的距离等于的两条直线的方程,再由直线与圆的几何性质,圆心到所求直线的距离一个小于半径,一个大于半径,列不等式即可解得半径r的取值范围
【解析】
设到直线l:x+y-10=0的距离等于的直线方程为x+y+c=0,
则,=,∴c=-8或-12
∴到直线l:x+y-10=0的距离等于的直线方程为l1:x+y-8=0,l2:x+y-12=0
∵圆心(2,2)到直线l1的距离d1==2;到直线l2的距离d2==4
∴要使圆(x-2)2+(y-2)2=r2(r>0)上只有两个不同的点到直线l:x+y-10=0的距离等于,需2<r<4
故答案为2<r<4