设A(x1,y1),B(x2,y2),把直线y=-x+1代入抛物线y2=2px(p>0),得y2+2py-2p=0,所以y1+y2=-2p,y1y2=-2p,x1x2=(1-y1)(1-y2)=1-(y1+y2)+y1y2=1+2p-2p=1.因为以弦AB为直径的圆恰好过原点,所以OA⊥OB,所以x1x2+y1y2=1-2p=0,由此能求出抛物线的方程.
【解析】
设A(x1,y1),B(x2,y2),
y=-x+1,
x=1-y,
则:y2=2p(1-y),
y2+2py-2p=0,
y1+y2=-2p,y1y2=-2p,
x1x2=(1-y1)(1-y2)=1-(y1+y2)+y1y2=1+2p-2p=1.
∵以弦AB为直径的圆恰好过原点,
∴OA⊥OB,
∴x1x2+y1y2=0
∵x1x2+y1y2=1-2p=0
∴p=.
∴抛物线的方程为:y2=x.