满分5 > 高中数学试题 >

已知x=3是函数f(x)=aln(1+x)+x2-10x的一个极值点. (Ⅰ)求...

已知x=3是函数f(x)=aln(1+x)+x2-10x的一个极值点.
(Ⅰ)求a;
(Ⅱ)求函数f(x)的单调区间;
(Ⅲ)若直线y=b与函数y=f(x)的图象有3个交点,求b的取值范围.
(Ⅰ)先求导,再由x=3是函数f(x)=aln(1+x)+x2-10x的一个极值点即求解. (Ⅱ)由(Ⅰ)确定f(x)=16ln(1+x)+x2-10x,x∈(-1,+∞)再由f′(x)>0和f′(x)<0求得单调区间. (Ⅲ)由(Ⅱ)知,f(x)在(-1,1)内单调增加,在(1,3)内单调减少,在(3,+∞)上单调增加,且当x=1或x=3时,f′(x)=0,可得f(x)的极大值为f(1),极小值为f(3)一,再由直线y=b与函数y=f(x)的图象有3个交点则须有f(3)<b<f(1)求解,因此,b的取值范围为(32ln2-21,16ln2-9). 【解析】 (Ⅰ)因为 所以 因此a=16 (Ⅱ)由(Ⅰ)知,f(x)=16ln(1+x)+x2-10x,x∈(-1,+∞) 当x∈(-1,1)∪(3,+∞)时,f′(x)>0 当x∈(1,3)时,f′(x)<0 所以f(x)的单调增区间是(-1,1),(3,+∞)f(x)的单调减区间是(1,3) (Ⅲ)由(Ⅱ)知,f(x)在(-1,1)内单调增加, 在(1,3)内单调减少,在(3,+∞)上单调增加,且当x=1或x=3时,f′(x)=0 所以f(x)的极大值为f(1)=16ln2-9,极小值为f(3)=32ln2-21 因此f(16)=162-10×16>16ln2-9=f(1)f(e-2-1)<-32+11=-21<f(3) 所以在f(x)的三个单调区间(-1,1),(1,3),(3,+∞)直线y=b有y=f(x)的图象各有一个交点,当且仅当f(3)<b<f(1) 因此,b的取值范围为(32ln2-21,16ln2-9).
复制答案
考点分析:
相关试题推荐
设函数f(x)=ax3+bx+c(a≠0)为奇函数,其图象在点(1,f(1))处的切线与直线x-6y-7=0垂直,导函数f'(x)的最小值为-12.
(Ⅰ)求a,b,c的值;
(Ⅱ)求函数f(x)的单调递增区间,并求函数f(x)在[-1,3]上的最大值和最小值.
查看答案
已知函数f(x)=x2+manfen5.com 满分网(x≠0,a∈R)
(1)当a为何值时,函数f(x)为偶函数;
(2)若f(x)在区间[2,+∞)是增函数,求实数a的取值范围.
查看答案
已知函数f(x)在定义域(0,+∞)上为增函数,且满足f(xy)=f(x)+f(y),f(3)=1
(1)求f(9),f(27)的值
(2)解不等式f(x)+f(x-8)<2.
查看答案
(1)已知manfen5.com 满分网,求cosα,tanα的值.
(2)已知角α的终边过点P(-1,2),求sinα,cosα的值.
查看答案
如图,已知圆O的半径为2,从圆O外一点A引切线AD和割线ABC,圆心O到AC的距离为manfen5.com 满分网,AB=3,则切线AD的长为   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.