满分5 > 高中数学试题 >

在平面直角坐标系xOy中,点P到两点,的距离之和等于4,设点P的轨迹为C. (Ⅰ...

在平面直角坐标系xOy中,点P到两点manfen5.com 满分网manfen5.com 满分网的距离之和等于4,设点P的轨迹为C.
(Ⅰ)写出C的方程;
(Ⅱ)设直线y=kx+1与C交于A,B两点.k为何值时manfen5.com 满分网manfen5.com 满分网?此时manfen5.com 满分网的值是多少?.
(Ⅰ)设P(x,y),由椭圆定义可知,点P的轨迹C是椭圆.从而写出其方程即可; (Ⅱ)设A(x1,y1),B(x2,y2),其坐标满足,将直线的方程代入椭圆的方程,消去y得到关于x的一元二次方程,再结合根与系数的关系及向量垂直的条件,求出k值即可,最后通牒利用弦长公式即可求得此时的值,从而解决问题. 【解析】 (Ⅰ)设P(x,y),由椭圆定义可知,点P的轨迹C是以为焦点, 长半轴为2的椭圆.它的短半轴, 故曲线C的方程为.(4分) (Ⅱ)设A(x1,y1),B(x2,y2),其坐标满足 消去y并整理得(k2+4)x2+2kx-3=0, 故.(6分) ,即x1x2+y1y2=0.而y1y2=k2x1x2+k(x1+x2)+1, 于是. 所以时,x1x2+y1y2=0,故.(8分) 当时,,., 而(x2-x1)2=(x2+x1)2-4x1x2=, 所以.(12分)
复制答案
考点分析:
相关试题推荐
已知函数f(x)=x3+mx2+nx-2的图象过点(-1,-6),且函数g(x)=f′(x)+6x的图象关于y轴对称.
(Ⅰ)求m、n的值及函数y=f(x)的单调区间;
(Ⅱ)若a>0,求函数y=f(x)在区间(a-1,a+1)内的极值.
查看答案
中心在原点,一焦点为F1(0,5manfen5.com 满分网)的椭圆被直线y=3x-2截得的弦的中点横坐标是manfen5.com 满分网,求此椭圆的方程.
查看答案
已知函数f(x)=ax3+(2a-1)x2+1,当x=-1时,函数f(x)有极值.
(I)求实数a的值;
(II)求函数f(x)在在[-1,1]的最大值和最小值.
查看答案
求经过点P(-3,0),Q(0,-2)的椭圆的标准方程,并求出椭圆的长轴长、短轴长、离心率、焦点坐标.
查看答案
已知函数f(x)=x2+c的图象经过点A(1,2).
( I)求c的值;
( II)求f(x)在A点处的切线方程.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.