满分5 > 高中数学试题 >

设a为实数,函数f(x)=x2+|x-a|+1,x∈R (1)讨论f(x)的奇偶...

设a为实数,函数f(x)=x2+|x-a|+1,x∈R
(1)讨论f(x)的奇偶性;
(2)求f(x)的最小值.
第一问考查函数的奇偶性,用特殊值法判断函数及不是奇函数又不是偶函数;第二问是求最值的题目,先判断函数的单调性再求最值. 【解析】 (1)当a=0时,函数f(-x)=(-x)2+|-x|+1=f(x) 此时,f(x)为偶函数 当a≠0时,f(a)=a2+1,f(-a)=a2+2|a|+1,f(a)≠f(-a),f(a)≠-f(-a) 此时f(x)既不是奇函数,也不是偶函数 (2)①当x≤a时, 当,则函数f(x)在(-∞,a]上单调递减,从而函数f(x)在(-∞,a]上的最小值为f(a)=a2+1. 若,则函数f(x)在(-∞,a]上的最小值为,且. ②当x≥a时,函数 若,则函数f(x)在(-∞,a]上的最小值为,且 若,则函数f(x)在[a,+∞)上单调递增,从而函数f(x)在[a,+∞)上的最小值为f(a)=a2+1. 综上,当时,函数f(x)的最小值为 当时,函数f(x)的最小值为a2+1 当时,函数f(x)的最小值为.
复制答案
考点分析:
相关试题推荐
已知函数f(x)=x2+ax,且对任意的实数x都有f(1+x)=f(1-x)成立.
(1)求实数a的值;
(2)利用单调性的定义证明函数f(x)在区间[1,+∞)上是增函数.
查看答案
已知定义在区间(-1,1)上的偶函数f(x),在(0,1)上为增函数,f(a-2)-f(4-a2)<0,求实数a的取值范围.
查看答案
设函数f(x)=ax+b的图象经过点(1,7),又其反函数的图象经过点(4,0),求函数的解析式,并求f(-2)、f(manfen5.com 满分网)的值.
查看答案
已知集合A={x|x2-3x+2≤0},B={y|y=x2-2x+a},且A⊂B,求a的取值范围.
查看答案
已知f(x)是R上的增函数,A(0,-1),B(3,1)是其图象上的两个点,那么|f(x+1)|<1的解集是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.