已知正四棱柱ABCD-A
1B
1C
1D
1.AB=1,AA
1=2,点E为CC
1中点,点F为BD
1中点.
(1)证明EF为BD
1与CC
1的公垂线;
(2)求点D
1到面BDE的距离.
考点分析:
相关试题推荐
4个男生,3个女生站成一排.(必须写出解析式再算出结果才能给分)
(1)3个女生必须排在一起,有多少种不同的排法?
(2)任何两女生彼此不相邻,有多少种不同的排法?
(3)甲,乙二人之间恰好有三个人,有多少种不同的排法?
(4)甲,乙两生相邻,但都不与丙相邻,有多少种不同的排法?
查看答案
已知球面上的三点A、B、C,AB=6,BC=8,AC=10,球的半径为13,求球心到平面ABC的距离.
查看答案
四棱锥P-ABCD中,PA⊥底面正方形ABCD于A,且PA=AB=a,E、F是侧棱PB、PC的中点,
(1)求证:EF∥平面PAB;
(2)求直线PC与底面ABCD所成角θ的正切值.
查看答案
已知m、n是不同的直线,α,β是不重合的平面,给出下列命题:
①若α∥β,m⊂α,n⊂β,则m∥n.
②若m,n⊂α,m∥β,n∥β,则α∥β.
③若m⊥α,n⊥β,m∥n,则α∥β.
④m、n是两条异面直线,若m∥α,m∥β,n∥α,n∥β,则α∥β.
上面命题中,真命题的序号是
(写出所有真命的序号).
查看答案
表面积为4π的球O与平面角为钝角的二面角的两个半平面相切于A、B两点,三角形OAB的面积
,则球心到二面角的棱的距离为
.
查看答案