满分5 > 高中数学试题 >

已知单调递增的等比数列{an}满足:a2+a3+a4=28,且a3+2是a2,a...

已知单调递增的等比数列{an}满足:a2+a3+a4=28,且a3+2是a2,a4的等差中项.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若bn=anlogmanfen5.com 满分网an,Sn=b1+b2+b3+…+bn,对任意正整数n,Sn+(n+m)an+1<0恒成立,试求m的取值范围.
(1)设等比数列{an}的首项为a1,公比为q,根据2(a3+2)=a2+a4,可求得a3.进而求得a2+a4=20.两式联立方程即可求得a1和q的值,最后根据等比数列的通项公式求得an. (2)把(1)中的an代入bn,再利用错位相减法求得Sn,再由Sn+(n+m)an+1<0恒成立进而求得m的范围. 【解析】 (1)设等比数列{an}的首项为a1,公比为q. 依题意, 有2(a3+2)=a2+a4, 代入a2+a3+a4=28, 得a3=8. ∴a2+a4=20. ∴ 解之得,或 又{an}单调递增, ∴q=2,a1=2,∴an=2n, (2)bn=2n•log2n=-n•2n, ∴-Sn=1×2+2×22+3×23++n×2n① -2Sn=1×22+2×23++(n-1)2n+n•2n+1② ①-②得,Sn=2+22+23++2n-n•2n+1 =-n•2n+1 =2n+1-2-n•2n+1 由Sn+(n+m)an+1<0, 即2n+1-2-n•2n+1+n•2n+1+m•2n+1<0对任意正整数n恒成立, ∴m•2n+1<2-2n+1. 对任意正整数n, m<-1恒成立. ∵-1>-1,∴m≤-1. 即m的取值范围是(-∞,-1].
复制答案
考点分析:
相关试题推荐
某企业2003年的纯利润为500万元,因设备老化等原因,企业的生产能力将逐年下降.若不能进行技术改造,预测从今年起每年比上一年纯利润减少20万元,今年初该企业一次性投入资金600万元进行技术改造,预测在未扣除技术改造资金的情况下,第n年(今年为第一年)的利润为500(1+manfen5.com 满分网)万元(n为正整数).
(Ⅰ)设从今年起的前n年,若该企业不进行技术改造的累计纯利润为An万元,进行技术改造后的累计纯利润为Bn万元(须扣除技术改造资金),求An、Bn的表达式;
(Ⅱ)依上述预测,从今年起该企业至少经过多少年,进行技术改造后的累计纯利润超过不进行技术改造的累计纯利润?
查看答案
已知Sn是等比数列{an}的前n项和,S3,S9,S6成等差数列,判断a2,a8,a5是否成等比数列,并说明理由.
查看答案
已知等差数列{an}中,a2=9,a5=21.
(1)求{an}的通项公式;
(2)令bn=2an,求数列{bn}的前n项和Sn
查看答案
已知Sn是公差为d的等差数列{an}的前n项和,且S6>S7>S5,则下列四个命题:①d<0;②S11>0;③S12<0;④S13>0中真命题的序号为    查看答案
若数列{an}满足manfen5.com 满分网(n∈N*,为常数),则称数列{an}为“调和数列”已知数列{amanfen5.com 满分网}为“调和数列”,且x1+x2+…+x20=200,则x3x18的最大值是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.