首先分析题目的新定义满足:“对于区间(1,2)上的任意实数x1,x2(x1≠x2),|f(x2)-f(x1)|<|x2-x1|恒成立”,则称f(x)为优美函数,要求选择优美曲线.故需要对4个选项代入不等式|f(x2)-f(x1)|<|x2-x1|分别验证是否成立即可得到答案.
【解析】
在区间(1,2)上的任意实数x1,x2(x1≠x2),分别验证下列4个函数.
对于A:f(x)=|x|,|f(x2)-f(x1)|=||x2|-|x1||=|x2-x1|(因为故x1和x2大于0)故对于等于号不满足,故不成立.
对于B:,|f(x2)-f(x1)|==<|x2-x1|(因为x1,x2在区间(1,2)上,故x1x2大于1)故成立.
对于C:f(x)=2x,|f(x2)-f(x1)|=2|x2-x1|<|x2-x1|.不成立.
对于D:f(x)=x2,|f(x2)-f(x1)|=|x22-x12|=(x2+x1)|x2-x1|>|x2-x1|不成立.
故选B.