由已知2cosAsinB=sinC=sin(A+B),结合和差角公式可求得A=B,由(a+b+c)(a+b-c)=3aba2+b2-c2=ab,由余弦定理可得CosC=可求C,从而可判断三角形的形状
【解析】
由三角形的内角和公式可得,2cosAsinB=sinC=sin(A+B)
∴2cosAsinB=sinAcosB+sinBcosA
∴sinAcosB-sinBcosA=0
即sin(A-B)=0
∴A=B
∵(a+b+c)(a+b-c)=3ab
∴(a+b)2-c2=3ab
即a2+b2-c2=ab
由余弦定理可得CosC==
∵0<C<π
∴
∴
故△ABC 为等边三角形