已知椭圆的两焦点为F
1(-
,0),F
2(
,0),离心率e=
.
(1)求此椭圆的方程;
(2)设直线l:y=x+m,若l与此椭圆相交于P,Q两点,且|PQ|等于椭圆的短轴长,求m的值.
考点分析:
相关试题推荐
某工厂用7万元钱购买了一台新机器,运输安装费用2千元,每年投保、动力消耗的费用也为2千元,每年的保养、维修、更换易损零件的费用逐年增加,第一年为2千元,第二年为3千元,第三年为4千元,依此类推,即每年增加1千元.问这台机器最佳使用年限是多少年?并求出年平均费用的最小值.(最佳使用年限佳是使年平均费用的最小的时间)
查看答案
已知直线l经过抛物线y
2=4x的焦点F,且与抛物线相交于A、B两点.
(1)若|AF|=4,求点A的坐标;
(2)若直线l的倾斜角为45°,求线段AB的长.
查看答案
设命题p:实数x满足x
2-4ax+3a
2<0,其中a>0,命题q:实数x满足
.
(Ⅰ)若a=1,且p∧q为真,求实数x的取值范围;
(Ⅱ)若¬p是¬q的充分不必要条件,求实数a的取值范围.
查看答案
已知a,b都是正数,并且a≠b,求证:a
5+b
5>a
2b
3+a
3b
2.
查看答案
(1)点A(2,-4)在以原点为顶点,坐标轴为对称轴的抛物线上,求抛物线方程;
(2)已知双曲线C经过点(1,1),它渐近线方程为y=±
x,求双曲线C的标准方程.
查看答案