设函数f(x)=lnx-
ax
2-bx.
(Ⅰ)当a=b=
时,求f(x)的最大值;
(Ⅱ)令F(x)=f(x)+
ax
2+bx+
(0<x≤3),以其图象上任意一点P(x
,y
)为切点的切线的斜率k≤
恒成立,求实数a的取值范围;
(Ⅲ)当a=0,b=-1时,方程2mf(x)=x
2有唯一实数解,求正数m的值.
考点分析:
相关试题推荐
已知椭圆的两焦点为
,
,离心率
.
(1)求此椭圆的方程;
(2)设直线l:y=x+m,若l与此椭圆相交于P,Q两点,且|PQ|等于椭圆的短轴长,求m的值;
(3)以此椭圆的上顶点B为直角顶点作椭圆的内接等腰直角三角形ABC,这样的直角三角形是否存在?若存在,请说明有几个;若不存在,请说明理由.
查看答案
某厂生产某种产品的年固定成本为250万元,每生产x千件,需另投入成本为C(x),当年产量不足80千件时,
(万元);当年产量不小于80千件时,
(万元).现已知此商品每件售价为500元,且该厂年内生产此商品能全部销售完.
(1)写出年利润L(万元)关于年产量x(千件)的函数解析式;
(2)年产量为多少千件时,该厂在这一商品的生产中所获利润最大?
查看答案
如图,已知四棱锥P-ABCD中,底面ABCD是直角梯形,AB∥DC,∠ABC=45°,DC=1,AB=2,PA⊥平面ABCD,PA=1.
(1)求证:AB∥平面PCD
(2)求证:BC⊥平面PAC.
查看答案
已知锐角△ABC中的内角A、B、C的对边分别为a,b,c,定义向量
.
(1)求函数f(x)=sin2xcosB-cos2xsinB的单调递增区间;
(2)如果b=2,求△ABC的面积的最大值.
查看答案
已知函数,f(x)=
,数列{a
n}满足a
1=1,a
n+1=f(a
n)(n∈N
*)
(I)求证数列{
}是等差数列,并求数列{a
n}的通项公式;
(II)记S
n=a
1a
2+a
2a
3+..a
na
n+1,求S
n.
查看答案