登录
|
注册
返回首页
联系我们
在线留言
满分5
>
高中数学试题
>
若在△ABC中,∠A=60°,b=1,S△ABC=,则= .
若在△ABC中,∠A=60°,b=1,S
△ABC
=
,则
=
.
由S△ABC= 求得c=4,由余弦定理求得a=,可得 2r= 的值,再由由正弦定理可得 =2r,从而求得结果. 【解析】 由S△ABC==×1×c×sin60°得c=4, 再由余弦定理可得a2=b2+c2-2bc•cos60°=13, ∴a=,∴2r==. 由正弦定理可得 ==2r=, 故答案为:.
复制答案
考点分析:
相关试题推荐
数列{a
n
}的前n项和S
n
=3n
2
-2n+1,则它的通项公式是
.
查看答案
(文)若实数x,y满足
则s=x+y的最大值为
.
查看答案
若数列{a
n
}满足:a
1
=1,a
n+1
=2a
n
(n∈N
+
),则a
5
=
.
查看答案
数列{a
n
}的前n项和为s
n
,若
,则s
5
等于( )
A.1
B.
C.
D.
查看答案
对任意的实数x,不等式mx
2
-mx-1<0恒成立,则实数m的取值范围是( )
A.(-4,0)
B.(-4,0]
C.[-4,0]
D.[-4,0)
查看答案
试题属性
题型:填空题
难度:中等
Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.