满分5 > 高中数学试题 >

设b>0,椭圆方程为,抛物线方程为x2=8(y-b).如图所示,过点F(0,b+...

manfen5.com 满分网设b>0,椭圆方程为manfen5.com 满分网,抛物线方程为x2=8(y-b).如图所示,过点F(0,b+2)作x轴的平行线,与抛物线在第一象限的交点为G,已知抛物线在点G的切线经过椭圆的右焦点F1
(1)求满足条件的椭圆方程和抛物线方程;
(2)设A,B分别是椭圆长轴的左、右端点,试探究在抛物线上是否存在点P,使得△ABP为直角三角形?若存在,请指出共有几个这样的点?并说明理由(不必具体求出这些点的坐标).
(1)先求出G点的坐标,利用导数求出过点G的切线斜率,得到过点G的切线方程,根据由切线方程求得的F1点的坐标,与用椭圆方程得F1点的坐标应该相同,求出b,椭圆和抛物线的方程可得. (2)以∠PAB为直角的Rt△ABP只有一个,以∠PBA为直角的Rt△ABP只有一个,以AB为直径的圆与抛物线有两个交点,根据直径对的圆周角等于直角,以∠APB为直角的Rt△ABP有两个.所以,共得到4个直角三角形. 【解析】 (1)由x2=8(y-b)得, 当y=b+2得x=±4,∴G点的坐标为(4,b+2),,y'|x=4=1, 过点G的切线方程为y-(b+2)=x-4即y=x+b-2, 令y=0得x=2-b,∴F1点的坐标为(2-b,0),由椭圆方程得F1点的坐标为(b,0), ∴2-b=b即b=1,即椭圆和抛物线的方程分别为和x2=8(y-1);(7分) (2)∵过A作x轴的垂线与抛物线只有一个交点P,∴以∠PAB为直角的Rt△ABP只有一个, 同理∴以∠PBA为直角的Rt△ABP只有一个; 若以∠APB为直角,则点P在以AB为直径的圆上,而以AB为直径的圆与抛物线有两个交点. 所以,以∠APB为直角的Rt△ABP有两个; 因此抛物线上存在四个点使得△ABP为直角三角形.(15分)
复制答案
考点分析:
相关试题推荐
在平面直角坐标系xOy中,已知圆心在第二象限,半径为2manfen5.com 满分网的圆C与直线y=x相切于坐标原点O.椭圆manfen5.com 满分网=1与圆C的一个交点到椭圆两点的距离之和为10.
(1)求圆C的方程;
(2)试探求C上是否存在异于原点的点Q,使Q到椭圆右焦点F的距离等于线段OF的长.若存在,请求出点Q的坐标;若不存在,请说明理由.
查看答案
已知三点P(5,2)、F1(-6,0)、F2(6,0).
(Ⅰ)求以F1、F2为焦点且过点P的椭圆标准方程;
(Ⅱ)设点P、F1、F2关于直线y=x的对称点分别为P′、F1′、F2′,求以F1′、F2′为焦点且过点P′的双曲线的标准方程.
查看答案
当α∈(0°,180°)变化时,方程x2sinα+y2cosα=1表示的曲线的形状怎样变换?
查看答案
经过M(2,1)作直线L交双曲线manfen5.com 满分网于A、B两点,且M为AB的中点,
(1)求直线L的方程;       
(2)求线段AB的长.
查看答案
已知命题p:|4-x|≤6,q:x2-2x+1-a2≥0(a>0),若非p是q的充分不必要条件,求a的取值范围.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.