登录
|
注册
返回首页
联系我们
在线留言
满分5
>
高中数学试题
>
已知函数. (Ⅰ)若曲线y=f(x)在x=1和x=3处的切线互相平行,求a的值;...
已知函数
.
(Ⅰ)若曲线y=f(x)在x=1和x=3处的切线互相平行,求a的值;
(Ⅱ)求f(x)的单调区间;
(Ⅲ)设g(x)=x
2
-2x,若对任意x
1
∈(0,2],均存在x
2
∈(0,2],使得f(x
1
)<g(x
2
),求a的取值范围.
(Ⅰ)由函数,知(x>0).由曲线y=f(x)在x=1和x=3处的切线互相平行,能求出a的值. (Ⅱ)(x>0).根据a的取值范围进行分类讨论能求出f(x)的单调区间. (Ⅲ)对任意x1∈(0,2],均存在x2∈(0,2],使得f(x1)<g(x2),等价于在(0,2]上有f(x)max<g(x)max.由此能求出a的取值范围. 【解析】 (Ⅰ)∵函数, ∴(x>0). ∵曲线y=f(x)在x=1和x=3处的切线互相平行, ∴f'(1)=f'(3), 即, 解得. (Ⅱ)(x>0). ①当a≤0时,x>0,ax-1<0, 在区间(0,2)上,f'(x)>0; 在区间(2,+∞)上f'(x)<0, 故f(x)的单调递增区间是(0,2), 单调递减区间是(2,+∞). ②当时,, 在区间(0,2)和上,f'(x)>0; 在区间上f'(x)<0, 故f(x)的单调递增区间是(0,2)和,单调递减区间是 ③当时,,故f(x)的单调递增区间是(0,+∞). ④当时,,在区间和(2,+∞)上,f'(x)>0; 在区间上f'(x)<0, 故f(x)的单调递增区间是和(2,+∞),单调递减区间是. (Ⅲ)由已知,在(0,2]上有f(x)max<g(x)max. 由已知,g(x)max=0,由(Ⅱ)可知, ①当时,f(x)在(0,2]上单调递增, 故f(x)max=f(2)=2a-2(2a+1)+2ln2=-2a-2+2ln2, 所以,-2a-2+2ln2<0,解得a>ln2-1, 故. ②当时,f(x)在上单调递增, 在上单调递减, 故. 由可知, 2lna>-2,-2lna<2, 所以,-2-2lna<0,f(x)max<0, 综上所述,a>ln2-1.
复制答案
考点分析:
相关试题推荐
已知椭圆
(a>b>0)的右焦点为F
2
(3,0),离心率为e.
(Ⅰ)若
,求椭圆的方程;
(Ⅱ)设直线y=kx与椭圆相交于A,B两点,M,N分别为线段AF
2
,BF
2
的中点.若坐标原点O在以MN为直径的圆上,且
,求k的取值范围.
查看答案
一个袋中装有6个形状大小完全相同的小球,球的编号分别为1,2,3,4,5,6.
(Ⅰ)若从袋中每次随机抽取1个球,有放回的抽取2次,求取出的两个球编号之和为6的概率;
(Ⅱ)若从袋中每次随机抽取2个球,有放回的抽取3次,求恰有2次抽到6号球的概率;
(Ⅲ)若一次从袋中随机抽取3个球,记球的最大编号为X,求随机变量X的分布列.
查看答案
如图,在三棱柱ABC-A
1
B
1
C
1
中,侧面ABB
1
A
1
,ACC
1
A
1
均为正方形,∠BAC=90°,点D是棱B
1
C
1
的中点.
(Ⅰ)求证:A
1
D⊥平面BB
1
C
1
C;
(Ⅱ)求证:AB
1
∥平面A
1
DC;
(Ⅲ)求二面角D-A
1
C-A的余弦值.
查看答案
已知函数
.
(Ⅰ)若点
在角α的终边上,求f(α)的值;
(Ⅱ)若
,求f(x)的值域.
查看答案
在平面直角坐标系中,定义d(P,Q)=|x
1
-x
2
|+|y
1
-y
2
|为两点P(x
1
,y
1
),Q(x
2
,y
2
)之间的“折线距离”.则坐标原点O与直线
上一点的“折线距离”的最小值是
;圆x
2
+y
2
=1上一点与直线
上一点的“折线距离”的最小值是
.
查看答案
试题属性
题型:解答题
难度:中等
Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.