(1)欲证C1O∥面AB1D1,根据直线与平面平行的判定定理可知只需证C1O与面AB1D1内一直线平行,连接A1C1,设A1C1∩B1D1=O1,连接AO1,易得C1O∥AO1,AO1⊂面AB1D1,C1O⊄面AB1D1,满足定理所需条件;
(2)欲证A1C⊥面AB1D1,根据直线与平面垂直的判定定理可知只需证A1C与面AB1D1内两相交直线垂直根据线面垂直的性质可知A1C⊥B1D1,同理可证A1C⊥AB1,又D1B1∩AB1=B1,满足定理所需条件.
证明:(1)连接A1C1,设A1C1∩B1D1=O1,连接AO1,
∵ABCD-A1B1C1D1是正方体,
∴A1ACC1是平行四边形,
∴A1C1∥AC且A1C1=AC,
又O1,O分别是A1C1,AC的中点,
∴O1C1∥AO且O1C1=AO,
∴AOC1O1是平行四边形,
∴C1O∥AO1,AO1⊂面AB1D1,C1O⊄面AB1D1,
∴C1O∥面AB1D1;
(2)∵CC1⊥面A1B1C1D1∴CC1⊥B1D!,
又∵A1C1⊥B1D1,∴B1D1⊥面A1C1C,即A1C⊥B1D1,
同理可证A1C⊥AB1,又D1B1∩AB1=B1,
∴A1C⊥面AB1D1