满分5 > 高中数学试题 >

过点P(-3,0)且倾斜角为30°的直线和曲线(t为参数)相交于A,B两点.求线...

过点P(-3,0)且倾斜角为30°的直线和曲线manfen5.com 满分网(t为参数)相交于A,B两点.求线段AB的长.
写出直线的参数方程,代入曲线方程得到关于s 的一元二次方程,利用根与系数的关系,代入弦长公式求得 AB的长. 【解析】 直线的参数方程为     (s 为参数),曲线 可以化为  x2-y2=4. 将直线的参数方程代入上式,得 . 设A、B对应的参数分别为 s1,s2,∴,s1•s2=10. ∴AB=|s1-s2|==2.
复制答案
考点分析:
相关试题推荐
(选修4-2:矩阵与变换)
已知矩阵A=manfen5.com 满分网,若矩阵A属于特征值6的一个特征向量为α1=manfen5.com 满分网,属于特征值1的一个特征向量为α2=manfen5.com 满分网.求矩阵A,并写出A的逆矩阵.
查看答案
已知函数f(x)=x3-3ax(a∈R),g(x)=lnx.
(Ⅰ)当a=1时,求f(x)在区间[-2,2]上的最小值;
(Ⅱ)若在区间[1,2]上f(x)的图象恒在g(x)图象的上方,求a的取值范围;
(Ⅲ)设h(x)=|f(x)|,x∈[-1,1],求h(x)的最大值F(a)的解析式.
查看答案
已知椭圆E:manfen5.com 满分网+manfen5.com 满分网=1的左焦点为F,左准线l与x轴的交点是圆C的圆心,圆C恰好经过坐标原点O,设G是圆C上任意一点.
(Ⅰ)求圆C的方程;
(Ⅱ)若直线FG与直线l交于点T,且G为线段FT的中点,求直线FG被圆C所截得的弦长;
(Ⅲ)在平面上是否存在一点P,使得manfen5.com 满分网=manfen5.com 满分网?若存在,求出点P坐标;若不存在,请说明理由.
查看答案
某自来水公司准备修建一条饮水渠,其横截面为如图所示的等腰梯形,∠ABC=120°,
按照设计要求,其横截面面积为manfen5.com 满分网平方米,为了使建造的水渠用料最省,横截面的周
长(梯形的底BC与两腰长的和)必须最小,设水渠深h米.
(Ⅰ)当h为多少米时,用料最省?
(Ⅱ)如果水渠的深度设计在manfen5.com 满分网的范围内,求横截面周长的最小值.

manfen5.com 满分网 查看答案
已知等差数列{an}中,首项a1=1,公差d为整数,且满足a1+3<a3,a2+5>a4,数列{bn}满足manfen5.com 满分网,其前n项和为Sn
(1)求数列{an}的通项公式an
(2)若S2为S1,Sm(m∈N*)的等比中项,求m的值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.