满分5 > 高中数学试题 >

已知在平面直角坐标系xOy中的一个椭圆,它的中心在原点,左焦点为,右顶点为D(2...

manfen5.com 满分网已知在平面直角坐标系xOy中的一个椭圆,它的中心在原点,左焦点为manfen5.com 满分网,右顶点为D(2,0),设点manfen5.com 满分网
(1)求该椭圆的标准方程;
(2)若P是椭圆上的动点,求线段PA中点M的轨迹方程;
(3)过原点O的直线交椭圆于点B,C,求△ABC面积的最大值.
(1)由“左焦点为,右顶点为D(2,0)”得到椭圆的半长轴a,半焦距c,再求得半短轴b最后由椭圆的焦点在x轴上求得方程. (2)设线段PA的中点为M(x,y),点P的坐标是(x,y),由中点坐标公式,分别求得x,y,代入椭圆方程,可求得线段PA中点M的轨迹方程. (3)分直线BC垂直于x轴时和直线BC不垂直于x轴两种情况分析,求得弦长|BC|,原点到直线的距离建立三角形面积模型,再用基本不等式求其最值. 【解析】 (1)由已知得椭圆的半长轴a=2,半焦距c=,则半短轴b=1. 又椭圆的焦点在x轴上, ∴椭圆的标准方程为 (2)设线段PA的中点为M(x,y),点P的坐标是(x,y), 由得 由,点P在椭圆上,得, ∴线段PA中点M的轨迹方程是. (3)当直线BC垂直于x轴时,BC=2, 因此△ABC的面积S△ABC=1. 当直线BC不垂直于x轴时,说该直线方程为y=kx,代入, 解得B(,),C(-,-), 则,又点A到直线BC的距离d=, ∴△ABC的面积S△ABC= 于是S△ABC= 由≥-1,得S△ABC≤,其中,当k=-时,等号成立. ∴S△ABC的最大值是.
复制答案
考点分析:
相关试题推荐
已知函数manfen5.com 满分网(a,b为常数)且方程f(x)-x+12=0有两个实根为x1=3,x2=4.
(1)求函数f(x)的解析式;
(2)设k>1,解关于x的不等式;manfen5.com 满分网
查看答案
某种商品原来定价每件p元,每月将卖出n件.假若定价上涨x成(注:x成即定价为原来的(1+manfen5.com 满分网)倍,0<x≤10,每月卖出数量将减少y成,而售货金额变成原来的z倍.
(1)若y=ax,其中a是满足manfen5.com 满分网的常数,用a来表示当售货金额最大时x的值.
(2)若y=manfen5.com 满分网x,求使售货金额比原来有所增加的x的取值范围.
查看答案
设a1=2,a2=4,数列{bn}满足:bn=an+1-an,bn+1=2bn+2,
(1)求证:数列{bn+2}是等比数列(要指出首项与公比),
(2)求数列{an}的通项公式.
查看答案
manfen5.com 满分网如图,在四边形ABCD中,已知AD⊥CD,AD=10,AB=14,∠BDA=60°,∠BCD=135° 求BC的长.
查看答案
不等式ax2+bx+2>0的解集为(-manfen5.com 满分网manfen5.com 满分网),则a+b等于     查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.