满分5 > 高中数学试题 >

设函数f(x)=x3-6x+5,x∈R (Ⅰ)求f(x)的单调区间和极值;并求该...

设函数f(x)=x3-6x+5,x∈R
(Ⅰ)求f(x)的单调区间和极值;并求该曲线在x=1处的切线方程.
(Ⅱ)若关于x的方程f(x)=a有3个不同实根,求实数a的取值范围.
(Ⅲ)已知当x∈(1,+∞)时,f(x)≥k(x-1)恒成立,求实数k的取值范围.
(Ⅰ)求出函数的导数,令导数大于0,解得函数的增区间,令导数小于0,解得函数的减区间,令导数等于0,解得函数的极值点,再根据极值点两侧的导数的正负判断是极大值还是极小值. (Ⅱ)若关于x的方程f(x)=a有3个不同实根,则y=f(x)图象与y=a图象必有3个不同的交点,a应该介于函数的极小值与极大值之间. (Ⅲ)因为x∈(1,+∞),所以f(x)≥k(x-1)恒成立可转化为k≤恒成立,所以k小于等于的最小值,再化简,求最小值即可. 【解析】 (Ⅰ)对函数f(x)=x3-6x+5求导,得函数f′(x)=3x2-6 令f′(x)>0,即3x2-6>0,解得x>,或x<- f′(x)<0,即3x2-6<0,解得-<x< f′(x)=0,即3x2-6=0,解得x=,或=<- f(-)=5+4,f()=5-4 ∴f(x)的单调递增区间是(-∞,-)及(,+∞),单调递减区间是(-,) 当x=-,f(x)有极大值5+4;当x=,f(x)有极小值5-4 又∵f′(1)=-3,f(1)=0 ∴曲线在x=1处的切线方程为y=-3x+3                  (Ⅱ)当5-4<a<5+4时,直线y=a与y=f(x)的图象有3个不同交点,此时方程f(x)=a有3个不同实根. ∴实数a的取值范围为(5-4,5+4) (Ⅲ)x∈(1,+∞)时,f(x)≥k(x-1)恒成立,也就是k≤恒成立, 令g(x)=,则g(x)==x2+x-5, ∴g(x)的最小值为-3,∴k≤-3
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网已知在平面直角坐标系xOy中的一个椭圆,它的中心在原点,左焦点为manfen5.com 满分网,右顶点为D(2,0),设点manfen5.com 满分网
(1)求该椭圆的标准方程;
(2)若P是椭圆上的动点,求线段PA中点M的轨迹方程;
(3)过原点O的直线交椭圆于点B,C,求△ABC面积的最大值.
查看答案
已知函数manfen5.com 满分网(a,b为常数)且方程f(x)-x+12=0有两个实根为x1=3,x2=4.
(1)求函数f(x)的解析式;
(2)设k>1,解关于x的不等式;manfen5.com 满分网
查看答案
某种商品原来定价每件p元,每月将卖出n件.假若定价上涨x成(注:x成即定价为原来的(1+manfen5.com 满分网)倍,0<x≤10,每月卖出数量将减少y成,而售货金额变成原来的z倍.
(1)若y=ax,其中a是满足manfen5.com 满分网的常数,用a来表示当售货金额最大时x的值.
(2)若y=manfen5.com 满分网x,求使售货金额比原来有所增加的x的取值范围.
查看答案
设a1=2,a2=4,数列{bn}满足:bn=an+1-an,bn+1=2bn+2,
(1)求证:数列{bn+2}是等比数列(要指出首项与公比),
(2)求数列{an}的通项公式.
查看答案
manfen5.com 满分网如图,在四边形ABCD中,已知AD⊥CD,AD=10,AB=14,∠BDA=60°,∠BCD=135° 求BC的长.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.