满分5 > 高中数学试题 >

如图,已知椭圆=1(a>b>0),F1、F2分别为椭 圆的左、右焦点,A为椭圆的...

如图,已知椭圆manfen5.com 满分网=1(a>b>0),F1、F2分别为椭
圆的左、右焦点,A为椭圆的上顶点,直线AF2交椭圆于另一
点B、
(1)若∠F1AB=90°,求椭圆的离心率;
(2)若manfen5.com 满分网=2manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网=manfen5.com 满分网,求椭圆的方程.

manfen5.com 满分网
(1)根据∠F1AB=90°推断出△AOF2为等腰直角三角形,进而可知OA=OF2,求得b和c的关系,进而可求得a和c的关系,即椭圆的离心率. (2)根据题意可推断出A,和两个焦点的坐标,设出B的坐标,利用已知条件中向量的关系,求得x和y关于c的表达式,代入椭圆方程求得a和c的关系,利用•=求得a和c的关系,最后联立求得a和b,则椭圆方程可得. 【解析】 (1)若∠F1AB=90°,则△AOF2为等腰直角三角形,所以有OA=OF2,即b=C、 所以a=c,e==. (2)由题知A(0,b),F1(-c,0),F2(c,0), 其中,c=,设B(x,y). 由=2⇔(c,-b)=2(x-c,y),解得x=, y=-,即B(,-). 将B点坐标代入=1,得+=1, 即+=1, 解得a2=3c2.① 又由•=(-c,-b)•(,-)= ⇒b2-c2=1, 即有a2-2c2=1.② 由①,②解得c2=1,a2=3,从而有b2=2. 所以椭圆方程为+=1.
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网如图,在三棱拄ABC-A1B1C1中,AB⊥侧面BB1C1C,已知manfen5.com 满分网
(Ⅰ)求证:C1B⊥平面ABC;
(Ⅱ)试在棱CC1(不包含端点C,C1)上确定一点E的位置,使得EA⊥EB1
(Ⅲ)在(Ⅱ)的条件下,AB=manfen5.com 满分网,求二面角A-EB1-A1的平面角的正切值.
查看答案
设数列{an}的前n项和伟Sn,对一切n∈N+,点(n,Sn)在函数f(x)=x2+x的图象上.
(1)求an的表达式;
(2)将数列{an}依次按1项,2项循环地分为(a1),(a2,a3),(a4),(a5,a6),(a7),(a8,a9),(a10),…,分别计算各个括号内各数之和,设由这些和按原来括号的前后顺序构成的数列为{bn},求b100的值.
查看答案
△ABC中,三个内角A、B、C所对的边分别为a、b、c,若B=60°,a=(manfen5.com 满分网-1)c.
(1)求角A的大小;
(2)已知S△ABC=6+2manfen5.com 满分网,求函数f(x)=cos2x+asinx的最大值.
查看答案
设不等式组manfen5.com 满分网所表示的平面区域为S,若A、B为S内的任意两个点,则|AB|的最大值为    查看答案
为了解某校高三学生的视力情况,随机地抽查了该校100名高三学生的视力情况,得到频率分布直方图如图所示,由于不慎,部分数据丢失,但知道前四组的频数成等比数列,后六组的频数成等差数列,设最大频率为a,视 力在4.6到5.0之间的学生数为b,则a+b的值为   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.