至少有一个方程有实根的对立面是三个方程都没有根,由于正面解决此问题分类较多,而其对立面情况单一,故求解此类问题一般先假设没有一个方程有实数根,然后由根的判别式解得三方程都没有根的实数a的取值范围,其补集即为个方程 x2+4ax-4a+3=0,x2+(a-1)x+a2=0,x2+2ax-2a=0至少有一个方程有实根成立的实数a的取值范围.此种方法称为反证法
【解析】
假设没有一个方程有实数根,则:
16a2-4(3-4a)<0(1)
(a-1)2-4a2<0(2)
4a2+8a<0(3)(5分)
解之得:<a<-1(10分)
故三个方程至少有一个方程有实根的a的取值范围是:{a|a≥-1或a≤}.