已知f(x)=x(x-a)(x-b),点A(s,f(s)),B(t,f(t)).
(Ⅰ)若a=b=1,求函数f(x)的单调递增区间;
(Ⅱ)若函数f(x)的导函数f'(x)满足:当|x|≤1时,有|f'(x)|≤
恒成立,求函数f(x)的解析表达式;
(Ⅲ)若0<a<b,函数f(x)在x=s和x=t处取得极值,且
,证明:
与
不可能垂直.
考点分析:
相关试题推荐
已知函数y=f(x)=
.
(1)求函数y=f(x)的图象在x=
处的切线方程;
(2)求y=f(x)的最大值;
(3)设实数a>0,求函数F(x)=af(x)在[a,2a]上的最小值.
查看答案
命题p:方程x
2+mx+1=0有两个不等的正实数根,命题q:方程4x
2+4(m+2)x+1=0无实数根.若“p或q”为真命题,求m的取值范围.
查看答案
如图,一矩形铁皮的长为8cm,宽为5cm,在四个角上截去四个相同的小正方形,制成一个无盖的小盒子,设小正方形的边长为多少时,盒子容积最大?最大值为多少?
查看答案
己知下列三个方程 x
2+4ax-4a+3=0,x
2+(a-1)x+a
2=0,x
2+2ax-2a=0至少有一个方程有实根,求实数a的取值范围.
查看答案
设函数
的定义域为A,若命题p:3∈A与q:5∈A有且只有一个为真命题,求实数a的取值范围.
查看答案