满分5 > 高中数学试题 >

已知函数(a>1),求证: (1)函数f(x)在(-1,+∞)上为增函数; (2...

已知函数manfen5.com 满分网(a>1),求证:
(1)函数f(x)在(-1,+∞)上为增函数;
(2)方程f(x)=0没有负数根.
(1)证明函数的单调性,一个重要的基本的方法就是根据函数单调性的定义; (2)对于否定性命题的证明,可用反证法,先假设方程f(x)=0有负数根,经过层层推理,最后推出一个矛盾的结论. 证明:(1)设-1<x1<x2, 则 =, ∵-1<x1<x2,∴x1+1>0,x2+1>0,x1-x2<0, ∴; ∵-1<x1<x2,且a>1,∴,∴, ∴f(x1)-f(x2)<0,即f(x1)<f(x2), ∴函数f(x)在(-1,+∞)上为增函数; (2)假设x是方程f(x)=0的负数根,且x≠-1,则, 即,① 当-1<x<0时,0<x+1<1,∴, ∴,而由a>1知.∴①式不成立; 当x<-1时,x+1<0,∴,∴,而. ∴①式不成立.综上所述,方程f(x)=0没有负数根.
复制答案
考点分析:
相关试题推荐
对于等差数列{an}有如下命题:“若{an}是等差数列,a1=0,s、t是互不相等的正整数,则有(s-1)at-(t-1)as=O”.类比此命题,给出等比数列{bn}相应的一个正确命题是:
    ”. 查看答案
若复数z满足manfen5.com 满分网,则|z+1|的值为    查看答案
manfen5.com 满分网,则a,b,c的大小关系是( )
A.a<b<c
B.a<c<b
C.b<a<c
D.c<b<a
查看答案
如图所示,正方形OACB内的阴影区域的上边界是曲线y=sinx,现向正方形区域内随机等可能地投点,则点落在阴影区域的概率是( )
manfen5.com 满分网
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
已知函数f(x)的定义域为(-∞,+∞),f(x)为f(x)的导函数,函数y=f(x)的图象如图所示,且f(-2)=1,f(3)=1,则不等式f(x2-6)>1的解集为( )
manfen5.com 满分网
A.(2,3)
B.(-manfen5.com 满分网manfen5.com 满分网
C.(2,3)∪(-3,-2)
D.(-∞,-manfen5.com 满分网)∪(manfen5.com 满分网,+∞)
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.