满分5 > 高中数学试题 >

如图是某直三棱柱(侧棱与底面垂直)被削去上底后的直观图与三视图的侧视图、俯视图,...

如图是某直三棱柱(侧棱与底面垂直)被削去上底后的直观图与三视图的侧视图、俯视图,在直观图中,M是BD的中点,侧视图是直角梯形,俯视图是等腰直角三角形,有关数据如图所示.
(Ⅰ)求出该几何体的体积.
(Ⅱ)若N是BC的中点,求证:AN∥平面CME;
(Ⅲ)求证:平面BDE⊥平面BCD.

manfen5.com 满分网
(I)由图可以看出,几何体可以看作是以点B为顶点的四棱锥,其与底面积易求; (II)证明线AN与面CME中一线平行即可利用线面平行的判定定理得出线面平行,由图形易得,可构造平行四边形证明线线平行,连接MN,则MN∥CD,AE∥CD,即可证得; (Ⅲ)要平面BDE⊥平面BCD,关键是在一平面中寻找另一平面的垂线,易得AN⊥平面BCD,利用AN∥EM,可得EM⊥平面BCD ,从而得证 【解析】 (Ⅰ)由题意,EA⊥平面ABC,DC⊥平面ABC,AE∥DC,AE=2,DC=4,AB⊥AC,且AB=AC=2 ∵EA⊥平面ABC, ∴EA⊥AB,又AB⊥AC,∴AB⊥平面ACDE ∴四棱锥B-ACDE的高h=AB=2,梯形ACDE的面积S=6 ∴, 即所求几何体的体积为4(4分) (Ⅱ)连接MN,则MN∥CD,AE∥CD 又,所以四边形ANME为平行四边形,∴AN∥EM …(6分) ∵AN⊄平面CME,EM⊂平面CME,所以,AN∥平面CME;    …(8分) (Ⅲ)∵AC=AB,N是BC的中点,AN⊥BC,平面ABC⊥平面BCD ∴AN⊥平面BCD  …(10分) 由(Ⅱ)知:AN∥EM ∴EM⊥平面BCD 又EM⊂平面BDE 所以,平面BDE⊥平面BCD.…(12分)
复制答案
考点分析:
相关试题推荐
根据市气象站对春季某一天气温变化的数据统计显示,气温变化的分布与曲线manfen5.com 满分网拟合(0≤x<24,单位为小时,y表示气温,单位为摄氏度,|ϕ|<π,A>0),现已知这天气温为4至12摄氏度,并得知在凌晨1时整气温最低,下午13时整气温最高.
(1)求这条曲线的函数表达式;
(2)求下午19时整的气温.
查看答案
有两个不透明的箱子,每个箱子都装有4个完全相同的小球,球上分别标有数字1、2、3、4.
(1)甲从其中一个箱子中摸出一个球,乙从另一个箱子摸出一个球,谁摸出的球上标的数字大谁就获胜(若数字相同则为平局),求甲获胜的概率;
(2)摸球方法与(Ⅰ)同,若规定:两人摸到的球上所标数字相同甲获胜,所标数字不相同则乙获胜,这样规定公平吗?
查看答案
对于函数manfen5.com 满分网,给出下列四个命题:
①存在manfen5.com 满分网,使manfen5.com 满分网; 
②存在manfen5.com 满分网,使f(x-α)=f(x+α)恒成立;
③存在φ∈R,使函数f(x+ϕ)的图象关于坐标原点成中心对称;
④函数f(x)的图象关于直线manfen5.com 满分网对称;
⑤函数f(x)的图象向左平移manfen5.com 满分网就能得到y=-2cosx的图象
其中正确命题的序号是    查看答案
函数f(x)=xlnx(x>0)的单调递增区间是    查看答案
已知x,y∈R+,且x+4y=1,则x•y的最大值为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.