登录
|
注册
返回首页
联系我们
在线留言
满分5
>
高中数学试题
>
cos80°cos35°+cosl0°cos55°=( ) A. B. C. D...
cos80°cos35°+cosl0°cos55°=( )
A.
B.
C.
D.
把原式中的cos80°和cos55°分别变形为cos(90°-10°)和cos(90°-35°),利用诱导公式cos(90°-α)=sinα变形后,再利用两角和与差的余弦函数公式化简,最后利用特殊角的三角函数值即可求出原式的值. 【解析】 cos80°cos35°+cosl0°cos55° =cos(90°-10°)cos35°+cos10°cos(90°-35°) =sin10°cos35°+cos10°sin35° =sin(10°+35°) =sin45 =. 故选A
复制答案
考点分析:
相关试题推荐
设a>0,b>0,a+b=1.
(1)试比较a
2
+b
2
与ab的大小;
(2)证明:ab+
≥
.
查看答案
已知函数
,
(Ⅰ)求f(x)的定义域与最小正周期;
(Ⅱ)设
,若
,求α的大小.
查看答案
在△ABC中,a、b、c分别为内角A、B、C的对边,且a
2
=b
2
+c
2
+bc.
(1)求角A的大小;
(2)若sinB+sinC=1,试判断△ABC的形状.
查看答案
已知平面向量
,
(1)证明:
;
(2)若存在实数k和t,满足
,
,且
,试求出k关于t的关系式,即k=f(t);
(3)根据(2)的结论,试求出函数k=f(t)在t∈(-2,2)上的最小值.
查看答案
记关于x的不等式
的解集为P,不等式|x-1|≤3的解集为Q.
(1)若a=3,求P.
(2)若P⊆Q,求实数a的取值范围.
查看答案
试题属性
题型:选择题
难度:中等
Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.