满分5 > 高中数学试题 >

已知函数. (1)求证:不论a为何实数f(x)总是为增函数; (2)确定a的值,...

已知函数manfen5.com 满分网
(1)求证:不论a为何实数f(x)总是为增函数;
(2)确定a的值,使f(x)为奇函数;
(3)当f(x)为奇函数时,求f(x)的值域.
(1)先设x1<x2,欲证明不论a为何实数f(x)总是为增函数,只须证明:f(x1)-f(x2)<0,即可; (2)根据f(x)为奇函数,利用定义得出f(-x)=-f(x),从而求得a值即可; (3)由(2)知(4),利用指数函数2x的性质结合不等式的性质即可求得f(x)的值域. 【解析】 (1)∵f(x)的定义域为R,设x1<x2, 则=, ∵x1<x2,∴,∴f(x1)-f(x2)<0, 即f(x1)<f(x2),所以不论a为何实数f(x)总为增函数. (2)∵f(x)为奇函数,∴f(-x)=-f(x),即, 解得:.∴. (3)由(2)知(4),∵2x+1>1(5),∴(6),∴,∴ 所以f(x)的值域为.
复制答案
考点分析:
相关试题推荐
某服装厂生产一种服装,每件服装的成本为40元,出厂单价定为60元.该厂为鼓励销售商订购,决定当一次订购量超过100件时,每多订购一件,订购的全部服装的出厂单价就降低0.02元.根据市场调查,销售商一次订购量不会超过500件.
(I)设一次订购量为x件,服装的实际出厂单价为P元,写出函数P=f(x)的表达式;
(Ⅱ)当销售商一次订购了450件服装时,该服装厂获得的利润是多少元?
(服装厂售出一件服装的利润=实际出厂单价-成本)
查看答案
计算:(1)已知a-a-1=1,求manfen5.com 满分网的值.
(2)(lg2)3+3lg2•lg5+(lg5)3的值.
查看答案
已知函数manfen5.com 满分网,求函数f(x)的定义域,并讨论它的奇偶性和单调性.
查看答案
已知M={x|-2≤x≤5},N={x|a+1≤x≤2a-1}.
(Ⅰ)若M⊆N,求实数a的取值范围;
(Ⅱ)若M⊇N,求实数a的取值范围.
查看答案
长方体ABCD-A1B1C1D1中,AB=2,BC=3,AA1=5,则一只小虫从A点沿长方体的表面爬到C1点的最短距离是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.