满分5 > 高中数学试题 >

已知函数f(x)=sinωx•cosωx-cos2ωx+(ω∈R,x∈R)的最小...

已知函数f(x)=manfen5.com 满分网sinωx•cosωx-cos2ωx+manfen5.com 满分网(ω∈R,x∈R)的最小正周期为π,且图象关于直线x=manfen5.com 满分网对称.
(1)求f(x)的解析式;
(2)若函数y=1-f(x)的图象与直线y=a在[0,manfen5.com 满分网]上只有一个交点,求实数a的取值范围.
(1)先根据两角和与差的公式和二倍角公式进行化简,再由最小正周期求出ω的值,最后根据图象关于直线x=对称确定函数f(x)的解析式. (2)将(1)中函数f(x)的解析式代入到y=1-f(x)中,然后在同一坐标系中画出y=1-f(x)与y=a的图象,进而根据图象可求出a的范围. 【解析】 (1)∵f(x)=sinωx•cosωx-cos2ωx+ =sin2ωx-(1+cos2ωx)+=sin(2ωx-)+1, ∵函数f(x)的最小正周期为π, ∴=π,即ω=±1, ∴f(x)=sin(±2x-)+1. ①当ω=1时,f(x)=sin(2x-)+1, ∴f()=sin+1不是函数的最大值或最小值, ∴其图象不关于x=对称,舍去. ②当ω=-1时,f(x)=-sin(2x+)+1, ∴f()=-sin+1=0是最小值, ∴其图象关于x=对称. 故f(x)的解析式为f(x)=1-sin(2x+). (2)∵y=1-f(x)=sin(2x+)在同一坐标系中作出 y=sin(2x+)和y=a的图象, 由图可知,直线y=a在a∈或a=1时,两曲线只有一个交点, ∴a∈或a=1.
复制答案
考点分析:
相关试题推荐
如图△ABC为正三角形,边长为2,以点A为圆心,1为半径作圆,PQ为圆A的任意一条直径.
(1)若manfen5.com 满分网,求manfen5.com 满分网
(2)求manfen5.com 满分网的最大值.
(3)判断manfen5.com 满分网的值是否会随点P的变化而变化,请说明理由.

manfen5.com 满分网 查看答案
在某个旅游业为主的地区,每年各个月份从事旅游服务工作的人数会发生周期性的变化.现假设该地区每年各个月份从事旅游服务工作的人数f(n)可近似地用函数f(n)=100•(Acos(ωn+2)+k)来刻画.其中:正整数n表示月份且n∈[1,12],例如n=1时表示1月份;A和k是正整数;ω>0.统计发现,该地区每年各个月份从事旅游服务工作的人数有以下规律:
①各年相同的月份,该地区从事旅游服务工作的人数基本相同;
②该地区从事旅游服务工作的人数最多的8月份和最少的2月份相差约400人;
③2月份该地区从事旅游服务工作的人数约为100人,随后逐月递增直到8月份达到最多.
(1)试根据已知信息,确定一个符合条件的f(n)(2)的表达式;
(2)一般地,当该地区从事旅游服务工作的人数超过400人时,该地区也进入了一年中的旅游“旺季”.那么,一年中的哪几个月是该地区的旅游“旺季”?请说明理由.
查看答案
为了解学生身高情况,某校以10%的比例对全校700名学生按性别进行出样检查,测得身高情况的统计图如下:
manfen5.com 满分网

(Ⅰ)估计该校男生的人数;
(Ⅱ)估计该校学生身高在170~185cm之间的概率;
(Ⅲ)从样本中身高在180~190cm之间的男生中任选2人,求至少有1人身高在185~190cm之间的概率.
查看答案
已知函数f (x)=manfen5.com 满分网
(1)求f (x)的定义域.
(2)用定义判断f (x)的奇偶性.
(3)在[-π,π]上作出函数f (x)的图象.
(4)指出f (x)的最小正周期及单调递增区间.
查看答案
在平面直角坐标系中,点manfen5.com 满分网在角α的终边上,点Q(sin2θ,-1)在角β的终边上,且manfen5.com 满分网
(1)求cos2θ;
(2)求sin(α+β)的值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.