满分5 > 高中数学试题 >

Y已知p:|1-|≤2,q:x2-2x+1-m2≤0(m>0).若“非p”是“非...

Y已知p:|1-manfen5.com 满分网|≤2,q:x2-2x+1-m2≤0(m>0).若“非p”是“非q”的必要而不充分条件,求实数m的取值范围.
思路一:“按题索骥”--解不等式,求否命题,再根据充要条件的集合表示进行求解; 思路二:本题也可以根据四种命题间的关系进行等价转换,然后再根据充要条件的集合表示进行求解. 【解析】 解法一:由p:|-|≤2,解得-2≤x≤10, ∴“非p”:A={x|x>10或x<-2}、(3分) 由q:x2-2x+1-m2≤0,解得1-m≤x≤1+m(m>0) ∴“非q”:B={x|x>1+m或x<1-m,m>0=(6分) 由“非p”是“非q”的必要而不充分条件可知:B⊆A.解得m≥9. ∴满足条件的m的取值范围为{m|m≥9}.(12分) 解法二:由“非p”是“非q”的必要而不充分条件.即“非q”⇒“非p”,但“非p”“非q”,可以等价转换为它的逆否命题:“p⇒q,但qp”.即p是q的充分而不必要条件. 由|1-|≤2,解得-2≤x≤10, ∴p={x|-2≤x≤10} 由x2-2x+1-m2>0,解得1-m≤x≤1+m(m>0) ∴q={x|1-m≤x≤1+m,m>0} 由p是q的充分而不必要条件可知: p⊆q⇔解得m≥9. ∴满足条件的m的取值范围为{m|m≥9}.
复制答案
考点分析:
相关试题推荐
已知某抛物线的顶点在原点,焦点在y轴上,其上的点P(m,-3)到焦点F的距离为5.
(Ⅰ)求该抛物线的方程.
(Ⅱ)设C是该抛物线上的一点,一以C为圆心的圆与其准线和y轴都相切,求C点的坐标.
查看答案
若点P是曲线y=x2-lnx上任意一点,则点P到直线y=x-2的最小距离为     查看答案
已知双曲线中心在坐标原点,一个焦点坐标为manfen5.com 满分网,离心率为manfen5.com 满分网,则该双曲线的渐近线方程为    查看答案
已知圆C的圆心与抛物线y2=4x的焦点关于直线y=x对称.直线4x-3y-2=0与圆C相交与A、B两点,且|AB|=6,则圆C的方程为    查看答案
设f(x)是可导函数,manfen5.com 满分网=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.