满分5 > 高中数学试题 >

已知函数f(x)=x3+2bx2+cx-2的图象在与x轴交点处的切线方程是y=5...

已知函数f(x)=x3+2bx2+cx-2的图象在与x轴交点处的切线方程是y=5x-10.
(1)求函数f(x)的解析式;
(2)设函数g(x)=f(x)+manfen5.com 满分网mx,若g(x)的极值存在,求实数m的取值范围以及函数g(x)取得极值时对应的自变量x的值.
(1)利用f(2)=0和f′(2)=5可得关于b,c的两个方程,解出b,c即可. (2)转化为g′(x)=0有实根.根据判别式求出对应的根,在找极值即可. 【解析】 (1)由已知,切点为(2,0),故有f(2)=0, 即4b+c+3=0.① f′(x)=3x2+4bx+c,由已知,f′(2)=12+8b+c=5. 得8b+c+7=0.② 联立①、②,解得c=1,b=-1, 于是函数解析式为f(x)=x3-2x2+x-2. (2)g(x)=x3-2x2+x-2+mx, g′(x)=3x2-4x+1+,令g′(x)=0. 当函数有极值时,△≥0,方程3x2-4x+1+=0有实根, 由△=4(1-m)≥0,得m≤1. ①当m=1时,g′(x)=0有实根x=,在x=左右两侧均有g′(x)>0,故函数g(x)无极值. ②当m<1时,g′(x)=0有两个实根, x1=(2-),x2=(2+), 当x变化时,g′(x)、g(x)的变化情况如下表: 故在m∈(-∞,1)时,函数g(x)有极值; 当x=(2-)时g(x)有极大值; 当x=(2+)时g(x)有极小值.
复制答案
考点分析:
相关试题推荐
已知直线l1为曲线y=x2+x-2在点(1,0)处的切线,l2为该曲线的另一条切线,且l1⊥l2
(Ⅰ)求直线l2的方程;
(Ⅱ)求由直线l1、l2和x轴所围成的三角形的面积.
查看答案
Y已知p:|1-manfen5.com 满分网|≤2,q:x2-2x+1-m2≤0(m>0).若“非p”是“非q”的必要而不充分条件,求实数m的取值范围.
查看答案
已知某抛物线的顶点在原点,焦点在y轴上,其上的点P(m,-3)到焦点F的距离为5.
(Ⅰ)求该抛物线的方程.
(Ⅱ)设C是该抛物线上的一点,一以C为圆心的圆与其准线和y轴都相切,求C点的坐标.
查看答案
若点P是曲线y=x2-lnx上任意一点,则点P到直线y=x-2的最小距离为     查看答案
已知双曲线中心在坐标原点,一个焦点坐标为manfen5.com 满分网,离心率为manfen5.com 满分网,则该双曲线的渐近线方程为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.