满分5 > 高中数学试题 >

某厂生产篮球、足球、排球,三类球均有A、B两种型号,该厂某天的产量如下表(单位:...

某厂生产篮球、足球、排球,三类球均有A、B两种型号,该厂某天的产量如下表(单位:个):
篮球足球排球
A型120100x
B型180200300
在这天生产的6种不同类型的球中,按分层抽样的方法抽取20个作为样本,其中篮球有6个.
(1)求x的值;
(2)在所抽取6个篮球样本中,经检测它们的得分如下:
4    9.2    8.7    9.3    9.0    8.4
把这6个篮球的得分看作一个总体,从中任取一个数,求该数与样本平均数之差的绝对值不超过0.3的概率;
(3)在所抽取的足球样本中,从中任取2个,求至少有1个为A型足球的概率.
(1),按分层抽样的方法抽取20个作为样本,其中篮球有6个,由分层抽样的规则求出总体容量即可求得x的值. (2)求出样本平均数,列举出该数与样本平均数之差的绝对值不超过0.3的数据,由古典概率模型的公式求出概率. (3)计算出两种足球在样本中各有几个,列举出抽两个事件的种数,及至少有1个为A型足球的种数,求出概率即可. 【解析】 (1)设该厂这天生产篮球、足球、排球的总数为n,由题意得:=…(2分) 所以n=1000…(3分) ∴x=n-120-180-100-200-300=100…(4分) (2)样本的平等数为=(9.4+9.2+8.7+9.3+9.0+8.4)=9.0…(5分) 那么与样本平均数之差的绝对值不超过0.3的数为9.2,8.7,9.3,9.0共4个数, 总个数为6. 所以该数与样本平均数之差的绝对值不0.3的概率为=…(8分) (3)设A、B型足球抽取的个数分别为n1,n2; 由分层抽样的方法知:==,所以n1=2,n2=4. 即A、B型足球的个数分别为2,4…(10分) 又2个A型足球记作A1、A2,4个B型足球记作B1,B2,B3,B4. 则从中任取2个的所有基本事件为: |A1,A2|,|A1,B1|,|A1,B2|,|A1,B3|,|A1,B4|,|A2,B1|,|A2,B2|,|A2,B3|, |A2,B4|,|B1,B2|,|B1,B3|,|B1,B4|,|B2,B3|,|B2,B4|,|B3,B4|,共15个…(11分) 其中至少一个A型足球的基本事件有9个:|A1,A2|,|A1,B1|,|A1,B2|,|A1,B3|, |A1,B4|,|A2,B1|,|A2,B2|,|A2,B3|,|A2,B4|,…(12分) 所以从中任取2个,至少有1个为A型足球的概率为=…(14分)
复制答案
考点分析:
相关试题推荐
已知manfen5.com 满分网,x∈R.
(1)求f(x)的表达式;
(2)若方程manfen5.com 满分网有两个不相等的实数根α,β,求αβ的值;
(3)若函数g(x)=f(x)-a在x∈[1,e]上有零点,求实数a的取值范围.
查看答案
已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π,x∈R)的部分图象如下图所示.
(1)求函数f(x)的解析式;
(2)求函数y=f(-x)的单调区间及在x∈[-2,2]上最值,并求出相应的x的值.

manfen5.com 满分网 查看答案
已知函数y=f(x)是R上的偶函数,对于x∈R都有f(x+6)=f(x)+f(3)成立,且f(-6)=-2,当x1,x2∈[0,3]且x1≠x2时,都有manfen5.com 满分网,则给出下列命题:
①f(2010)=-2;
②函数y=f(x)图象的一条对称轴为直线x=-6;
③函数y=f(x)在[-9,-6]上为减函数;
④函数f(x)在[-9,9]上有4个零点,上述命题中的所有正确命题的序号是    .(把你认为正确命题的序号都填上) 查看答案
已知manfen5.com 满分网,当manfen5.com 满分网时,均有manfen5.com 满分网,则实数a的取值范围为    查看答案
函数manfen5.com 满分网的单调递减区间为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.