满分5 > 高中数学试题 >

设函数f(x)=kax-a-x(a>0且a≠1)是奇函数, (1)求k的值; (...

设函数f(x)=kax-a-x(a>0且a≠1)是奇函数,
(1)求k的值;
(2)若f(1)>0,试求不等式f(x2+2x)+f(x-4)>0的解集;
(3)若manfen5.com 满分网,且g(x)=a2x+a-2x-2mf(x)在[1,+∞)上的最小值为-2,求m的值.
(1)根据奇函数的性质知道f(0)=0,即可得答案. (2)由(1)可得f(x)的解析式,再根据f(x)的单调性求出不等式的解集. (3)由课求出a的值,进而求出函数g(x)的解析式.再根据g(x)在[1,+∞)上的最小值为-2,求出m的值 【解析】 (1)∵f(x)为奇函数, ∴f(0)=0,∴k-1=0, ∴k=1 (2)∵f(1)>0,∴,∴a>1, 又f'(x)=axlna+a-xlna=(ax+a-x)lna>0 ∴f(x)在R上单调递增, 原不等式可化为:f(x2+2x)>f(4-x), ∴x2+2x>4-x,即x2+3x-4>0, ∴x>1或x<-4, ∴不等式的解集为{x|x>1或x<-4} (3)∵,∴,即2a2-3a-2=0, ∴a=2或(舍去) ∴g(x)=22x+2-2x-2m(2x-2-x)=(2x-2-x)2-2m(2x-2-x)+2 令t=f(x)=2x-2-x, ∵x≥1,∴, ∴g(x)=t2-2mt+2=(t-m)2+2-m2, 当时,当t=m时,g(x)min=2-m2=-2, ∴m=2, 当时,当时,,,舍去, ∴m=2.
复制答案
考点分析:
相关试题推荐
已知函数f(x)=x2,g(x)=x-1.
(1)若∃x∈R使f(x)<b•g(x),求实数b的取值范围;
(2)设F(x)=f(x)-mg(x)+1-m-m2,且|F(x)|在[0,1]上单调递增,求实数m的取值范围.
查看答案
某厂生产篮球、足球、排球,三类球均有A、B两种型号,该厂某天的产量如下表(单位:个):
篮球足球排球
A型120100x
B型180200300
在这天生产的6种不同类型的球中,按分层抽样的方法抽取20个作为样本,其中篮球有6个.
(1)求x的值;
(2)在所抽取6个篮球样本中,经检测它们的得分如下:
4    9.2    8.7    9.3    9.0    8.4
把这6个篮球的得分看作一个总体,从中任取一个数,求该数与样本平均数之差的绝对值不超过0.3的概率;
(3)在所抽取的足球样本中,从中任取2个,求至少有1个为A型足球的概率.
查看答案
已知manfen5.com 满分网,x∈R.
(1)求f(x)的表达式;
(2)若方程manfen5.com 满分网有两个不相等的实数根α,β,求αβ的值;
(3)若函数g(x)=f(x)-a在x∈[1,e]上有零点,求实数a的取值范围.
查看答案
已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π,x∈R)的部分图象如下图所示.
(1)求函数f(x)的解析式;
(2)求函数y=f(-x)的单调区间及在x∈[-2,2]上最值,并求出相应的x的值.

manfen5.com 满分网 查看答案
已知函数y=f(x)是R上的偶函数,对于x∈R都有f(x+6)=f(x)+f(3)成立,且f(-6)=-2,当x1,x2∈[0,3]且x1≠x2时,都有manfen5.com 满分网,则给出下列命题:
①f(2010)=-2;
②函数y=f(x)图象的一条对称轴为直线x=-6;
③函数y=f(x)在[-9,-6]上为减函数;
④函数f(x)在[-9,9]上有4个零点,上述命题中的所有正确命题的序号是    .(把你认为正确命题的序号都填上) 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.