满分5 > 高中数学试题 >

设x、y∈R,、为直角坐标平面内x、y轴正方向上的单位向量,=x+(y+2),=...

设x、y∈R,manfen5.com 满分网manfen5.com 满分网为直角坐标平面内x、y轴正方向上的单位向量,manfen5.com 满分网=xmanfen5.com 满分网+(y+2)manfen5.com 满分网manfen5.com 满分网=xmanfen5.com 满分网+(y-2)manfen5.com 满分网,且|manfen5.com 满分网|+|manfen5.com 满分网|=8.
(1)求点M(x,y)的轨迹C的方程;
(2)过点(0,3)作直线l与曲线C交于A、B两点,设manfen5.com 满分网,是否存在这样的直线l,使得四边形OAPB是矩形?若存在,求出直线l的方程;若不存在,试说明理由.
(1)根据向量的表达式和||+||的值可推断出点M(x,y)到两个定点F1(0,-2),F2(0,2)的距离之和为8.根据椭圆的定义判断出其轨迹为椭圆,进而根据c和a,求得b,则椭圆方程可得. (2)先看当直线l是y轴,则A、B两点是椭圆的顶点.根据=+=0可推断出P与O重合,与四边形OAPB是矩形矛盾.不可知直线的斜率一定存在,设出直线方程,和A,B的坐标,把直线方程与椭圆方程联立消去y,根据韦达定理求得x1+x2和x1x2的表达式,根据=+和矩形的性质判断出OA⊥OB,即•=0.求得x1x2+y1y2=0,进而求得k. (1)【解析】 ∵=xi+(y+2)j,=xi+(y-2)j,且||+||=8, ∴点M(x,y)到两个定点F1(0,-2),F2(0,2)的距离之和为8. c=2,a=4,则b==2 ∴轨迹C为以F1、F2为焦点的椭圆,方程为+=1. (2)∵l过y轴上的点(0,3), 若直线l是y轴,则A、B两点是椭圆的顶点. ∵=+=0, ∴P与O重合,与四边形OAPB是矩形矛盾. ∴直线l的斜率存在.设l方程为y=kx+3,A(x1,y1),B(x2,y2), 由y=kx+3,+=1,消y得(4+3k2)x2+18kx-21=0. 此时,△=(18k2)-4(4+3k2)>0恒成立且x1+x2=-,x1x2=-. ∵=+, ∴四边形OAPB是平行四边形.若存在直线l,使得四边形OAPB是矩形,则OA⊥OB,即•=0. ∵=(x1,y1),=(x2,y2), ∴•=x1x2+y1y2=0, 即(1+k2)x1x2+3k(x1+x2)+9=0, 即(1+k2)•(-)+3k•(-)+9=0,即k2=,得k=±. ∴存在直线l:y=±x+3,使得四边形OAPB是矩形.
复制答案
考点分析:
相关试题推荐
已知等差数列{an}的首项为a,公差为b,且不等式ax2-3x+2>0的解集为(-∞,1)∪(b,+∞).
(1)求数列{an}的通项公式及前n项和Sn公式;
(2)若数列{bn}满足bn=an•2n,求数列{bn}的前n项和Tn
查看答案
如图,货轮在海上以35n mile/h的速度沿方位角(从正北方向顺时针转到目标方向线的水平角)为152°的方向航行.为了确定船位,在B点处观测到灯塔A的方位角为122°.半小时后,货轮到达C点处,观测到灯塔A的方位角为32°.求此时货轮与灯塔之间的距离.

manfen5.com 满分网 查看答案
已知椭圆C1manfen5.com 满分网+manfen5.com 满分网=1(a>b>0)的离心率为manfen5.com 满分网,直线l:y=x+2与以原点为圆心、椭圆C1的短半轴长为半径的圆O相切.
(1)求椭圆C1的方程;
(2)设椭圆C1的左焦点为F1,右焦点为F2,直线l1过点F1且垂直于椭圆的长轴,动直线l2垂直于l1,垂足为点P,线段PF2的垂直平分线交l2于点M,求点M的轨迹C2的方程.
查看答案
已知等差数列{an}中,a2=9,a5=21.
(1)求{an}的通项公式;
(2)令bn=2an,求数列{bn}的前n项和Sn
查看答案
若有穷数列a1,a2…an(n是正整数),满足a1=an,a2=an-1…an=a1即ai=an-i+1
(i是正整数,且1≤i≤n),就称该数列为“对称数列”.
(1)已知数列{bn}是项数为7的对称数列,且b1,b2,b3,b4成等差数列,b1=2,b4=11,试写出{bn}的每一项
(2)已知{cn}是项数为2k-1(k≥1)的对称数列,且ck,ck+1…c2k-1构成首项为50,公差为-4的等差数列,数列{cn}的前2k-1项和为S2k-1,则当k为何值时,S2k-1取到最大值?最大值为多少?
(3)对于给定的正整数m>1,试写出所有项数不超过2m的对称数列,使得1,2,22…2m-1成为数列中的连续项;当m>1500时,试求其中一个数列的前2008项和S2008
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.