满分5 > 高中数学试题 >

有一块边长为4的正方形钢板,现对其进行切割、焊接成一个长方体形无盖容器(切、焊损...

有一块边长为4的正方形钢板,现对其进行切割、焊接成一个长方体形无盖容器(切、焊损耗忽略不计).有人应用数学知识作了如下设计:如图(a),在钢板的四个角处各切去一个小正方形,剩余部分围成一个长方体,该长方体的高为小正方形边长,如图(b).
(1)请你求出这种切割、焊接而成的长方体的最大容积V1
(2)由于上述设计存在缺陷(材料有所浪费),请你重新设计切、焊方法,使材料浪费减少,而且所得长方体容器的容积V2>V1

manfen5.com 满分网
本题首先设出小正方形的边长为x,则长方体的长宽都为4-2x,体积等于长×宽×高,求出体积的导数,令其等于零得出最大容积.第二问主要对题意理解清楚,说的是材料有所浪费,想到在两个角切去小正方形,去下的小正方形焊到对边上组成新的长方体体积比原来的大. 【解析】 (1)设切去正方形边长为x,则焊接成的长方体的底面边长为4-2x,高为x, ∴V1=(4-2x)2•x=4(x3-4x2+4x)(0<x<2). ∴V1′=4(3x2-8x+4). 令V1′=0,得x1=,x2=2(舍去). 而V1′=12(x-)(x-2), 又当x<时,V1′>0;当<x<2时,V1′<0, ∴当x=时,V1取最大值. (2)重新设计方案如下: 如图①,在正方形的两个角处各切下一个边长为1的小正方形;如图②,将切下的小正方形焊在未切口的正方形一边的中间;如图③,将图②焊成长方体容器. 新焊长方体容器底面是一长方形,长为3,宽为2,此长方体容积V2=3×2×1=6,显然V2>V1. 故第二种方案符合要求.
复制答案
考点分析:
相关试题推荐
函数y=f(x)是奇函数,它的定义域为R,当x>0时,f(x)=x2-x-4.
(Ⅰ)当x≤0时,求f(x)的表达式;
(Ⅱ)求不等式f(x)<2的解集.
查看答案
如图,△OAB是斜边长为4的等腰直角三角形,记△OAB位于直线x=t(t>0)左侧的图形的面积为f(t).
(Ⅰ)求函数f(t)的解集;
(Ⅱ)画出函数y=f(t)的图象.

manfen5.com 满分网 查看答案
已知命题p:曲线manfen5.com 满分网-manfen5.com 满分网=1为双曲线;命题q:函数f(x)=(4-a)x在R上是增函数;若命题“p或q”为真,“p且q”为假,求实数a的取值范围.
查看答案
一个同学在纸上写了一个实系数二次方程x2+ax+b=0(ab≠0),如果此方程有两实根,它们分别记为p,q,且p≤q,则他在纸上又写一个方程x3+px+q=0,重复上面的工作,直到产生一个无实根的二次方程为止.
(1)当a=-34,b=48×14,纸上写的实系数方程有    个;
(2)当a=-14,b=48时,这个同学在纸上写的实系数方程至多有    个. 查看答案
已知函数f(x)=(x-1)ln(1-x),则
(1)f(x)>0的解集为   
(2)f(x)的最大值为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.