先根据函数f(x)的奇偶性以及函数在区间(-∞,0)上的单调性,判断函数在区间(0,+∞)的单调性,再把不等式(x-1)f(x-1)>0变形为两个不等式组,根据函数的单调性分情况解两个不等式组,所得解集求并集即可.
【解析】
∵函数f(x)为奇函数且在(-∞,0)上单调递减,
∴f(x)在(0,+∞)上也单调递减,
∴(x-1)f(x-1)>0可变形为 ①或 ②
又∵函数f(x)为奇函数且f(2)=0,∴f(-2)=-f(2)=0
∴不等式组①的解为,即1<x<3;
不等式组①的解为,即-1<x<1
∴不等式(x-1)f(x-1)>0的解集为{x|-1<x<1或1<x<3}
故答案为{x|-1<x<1或1<x<3}